首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
This paper deals with the diffraction and scattering of a TM plane wave from a binary periodic random surface generated by a stationary binary sequence using the stochastic functional approach. The scattered wave is represented by a product of an exponential phase factor and a periodic stationary process. Such a periodic stationary process is regarded as a stochastic functional of the binary sequence and is expressed by an orthogonal binary functional expansion with band-limited binary kernels. Then, hierarchical equations for the binary kernels are derived from the boundary condition without approximation. We point out that binary kernels obtained by a single scattering approximation diverge unphysically when the periodic random surface is zero on average, thus the effects of multiple scattering should be taken into account. The expressions of such binary kernels are obtained using the multiply renormalizing approximation. Then, statistical properties such as differential scattering cross-section and the optical theorem are numerically calculated with the first two order binary kernels and illustrated in the figures. It is found that the incoherent Wood's anomaly appears in the angular distribution of scattering even when the surface has zero average.  相似文献   

2.
This paper deals with a probabilistic formulation of the wave scattering from a periodic random surface. When a plane wave is incident on a random surface described by a periodic stationary stochastic process, it is shown by a group-theoretic consideration that the scattered wave may have a stochastic Floquet form, i.e. a product of a periodic stationary random function and an exponential phase factor. Such a periodic stationary random function is then written by a harmonic series representation similar to a Fourier series, where Fourier coefficients are mutually correlated stationary processes instead of constants. The mutually correlated stationary processes are represented by Wiener - Hermite functional series with unknown coefficient functions called Wiener kernels. In case of a slightly rough surface and TE wave incidence, low-order Wiener kernels are determined from the boundary condition. Several statistical properties of the scattering are calculated and illustrated in figures.  相似文献   

3.
The present paper deals with the electromagnetic (EM) scattering from a perfectly conductive, random surface by means of the stochastic functional approach and aims to study the backscattering enhancement associated with co-polarized and cross-polarized scattering. The treatment is based on the stochastic functional theory where the random EM field is represented in terms of a Wiener-Hermite functional of the homogeneous Gaussian random surface. To obtain more precise solutions than the previous works (Nakayama J et al 1981 Radio Sci. 16 831-53), we first establish the reciprocal theorem for vector Wiener kernels which describe the stochastic functional representation of the EM field and, using this, we derive the reciprocal relations for the co-polarized and cross-polarized scattering distribution relative to TE and TM polarizations of incident wave. Solutions for the vector Wiener kernels up to the second are obtained so precisely as to satisfy the reciprocal relations and are expressed in terms of generating matrices, so that complex EM scattering processes described by the vector Wiener kernels are given dear physical interpretations. Compact operator representations are introduced to reformulate the hierarchical kernel equations, the mass operator equation and higher-order kernel solutions. It is shown that the second vector Wiener kernel physically describes a 'dressed double-scattering' process, similar to the scalar theory (Ogura H and Takahashi N 1995 Waves Random Media 5 223-42), and that the 'dressed double scattering', which involves anomalous scattering in the intermediate scattering processes, creates the backscattering enhancement in both co- and cross-polarized scattering for both TE and TM wave incidence.  相似文献   

4.
This paper deals with the scattering of a TM plane wave from conductive periodic random surfaces. By means of the stochastic functional approach, the scattered field is expressed in terms of a harmonic series representation, in which the coefficients are homogeneous random functions and are given by Wiener-Hermite expansions. An approximate solution for the Wiener kernels is obtained up to the second order. Several anomalies appear in the angular distribution of the incoherent scattering because of combinations of scattering due to surface randomness and diffraction due to surface periodicity. These are incoherent Wood's anomalies associated with guided surface waves propagating along the surface, enhanced backscattering and diffracted backscattering enhancement. The physical reasons for these anomalies and numerical results are discussed.  相似文献   

5.
This paper proposes an improved technique on the stochastic functional approach for randomly rough surface scattering. Its first application is made on a TE plane wave scattering from a Gaussian random surface having perfect conductivity with infinite extent. The random wavefield becomes a ‘stochastic Floquet form’ represented by a Wiener–Hermite expansion with unknown expansion coefficients called Wiener kernels. From the effective boundary condition as a model of the random surface, a series of integral equations determining the Wiener kernels are obtained. By applying a quadrature method to the first three order hierarchical equations, a matrix equation is derived. By solving that matrix equation, the exact Wiener kernels up to second order are numerically obtained. Then the incoherent scattering cross-section and the optical theorem are calculated. A prediction is that the optical theorem always holds, which is derived from previous work is confirmed in a numerical sense. It is then concluded that the improved technique is useful.  相似文献   

6.
This paper deals with a TE plane wave reflection and transmission from a thin film with one-dimensional disorder by means of the stochastic functional approach. The relative permittivity of the thin film is written by a Gaussian random field in the horizontal direction with infinite extent, and is uniform in the vertical direction with finite thickness. Arandomwavefield is obtained in terms of a Wiener-Hermite expansion representation with approximate expansion coefficients (Wiener kernels) under a small fluctuation case. For a SiC thin film and a glass thin film having one-dimensional disorder with Gaussian correlation or an exponential correlation, numerical examples of the first-order incoherent scattering cross section and the optical theorem are illustrated in the figures. It is then found that ripples and four major peaks appear in angular distributions of the incoherent scattering. Such four peaks may occur in the directions of forward scattering, specular reflection, backscattering and in the symmetrical direction of forward scattering with respect to the normal to surface of the thin film. Physical processes that yield such ripples and peaks are discussed.  相似文献   

7.
The scattering of an electromagnetic wave from a random cylindrical surface ir studied for a plane-wave incidence with S-(TE) polarization, by means ofthe stochastic scattering theory developed by Nakayama, Ogura. Sakati et al. The theory is based on the Wiener-Ito stochastic functional calculus combined with the group-theoretic consideration concerning the homogeneity of the random surface. The random surface is assumed to be a homogeneous Gaussian random field on the cylinder C, homogeneous with respect to the group of motiolrs on C: translations along the axis and rotations around the axis. An operator D operating on a random field on C is introduced in such a way that D keeps the homogeneous random surface invariant This gives a reprerentation of the cylbdrical group and commutes with the boundary condition and the Maxwell equation. Thus, for an injection of the mth cylindrical TE or TM wave, which is a vector eigenfunction of the D operator, the scattered random wave field is an eigenfunctiou with the same eigenvalue: it satisfies the Maxwell equation and is a stoch-tic Iunctional of the Gaussian random surface, BO that it can be expressed in a vector form of the Wiener-Ito expansion in t e m of TE and TM waves and orthogonal functional. of the Gaussian random measures associated with the random cylindrical surface. In the analysis the random surface is modelled by an approximate boundaiy condition representing a perfectly conducting cylindrical surface with a slight roughness. The boundary condition on the random cylinder is transformed into a hierarchy of equations for the Wiener kernels which can be solved approximately. The random wave field for a plane-wave injection is obtained by summing these fields over m. From the stochastic representation of the electromagnetic field so obtained, various statistical characteristics can be calculated the coherent scattering amplitude. total coherent power flow, incoherent power flow, differential sections for coherent rcatlerhig and incoherent scattering, etc. The power conservation law is cast into a stochastic electromagnetic version of the optical theorem stating that the total scatteiing cross section is given by the imaginary part of the forward coherent scattering amplitude. Numerical calculations are made for a planewave injection with S-(TE) polarization. The case of p-(TM) polarization can be treated in a similar manner.  相似文献   

8.
The scattering of an electromagnetic wave from a slightly random metal surface which supports the surface plasmon mode at optical frequencies is studied theoretically by means of a stochastic functional approach. In order to investigate the Stokes matrix or the state of polarizations, as well as the intensity of the scattered waves, the rough surface is assumed to be one dimensional, and is illuminated by a+45° linearly polarized plane electromagnetic (light) wave whose plane of incidence is perpendicular to the grooves of the surface. The stochastic wave fields are represented in terms of the Wiener-Hermite functionals, and the approximate solutions of the Wiener kernels are obtained for both TM- and TE-polarized components, from which the Stokes matrix elements can be determined. The dressed or perturbed plasmon mode in the presence of surface roughness is obtained by a mass operator involved in the solutions, and the enhanced backscattering closely related to the plasmon mode is studied in connection with the enhanced peak width and the mass operator for the dressed plasmon mode. The Stokes parameters and the degree of polarization are calculated numerically from various polarized components of the incoherent scattering distribution. To clarify the surface plasmon's association with the scattering characteristics, calculations are made for two kinds of random surfaces, a random surface with a centred Gaussian spectrum and a random grating with twin spectral peaks at the plasmon spatial frequency.  相似文献   

9.
In this paper we consider the problem of determining the law of binary stochastic processes from transition kernels depending on the whole past. These kernels are linear in the past values of the process. They are allowed to assume values close to both 0 and 1, preventing the application of usual results on uniqueness. We give sufficient conditions for uniqueness and non-uniqueness; in the former case a perfect simulation algorithm is also given.  相似文献   

10.
Abstract

The scattering of an electromagnetic wave from a random cylindrical surface ir studied for a plane-wave incidence with S-(TE) polarization, by means ofthe stochastic scattering theory developed by Nakayama, Ogura. Sakati et al. The theory is based on the Wiener-Ito stochastic functional calculus combined with the group-theoretic consideration concerning the homogeneity of the random surface. The random surface is assumed to be a homogeneous Gaussian random field on the cylinder C, homogeneous with respect to the group of motiolrs on C: translations along the axis and rotations around the axis. An operator D operating on a random field on C is introduced in such a way that D keeps the homogeneous random surface invariant This gives a reprerentation of the cylbdrical group and commutes with the boundary condition and the Maxwell equation. Thus, for an injection of the mth cylindrical TE or TM wave, which is a vector eigenfunction of the D operator, the scattered random wave field is an eigenfunctiou with the same eigenvalue: it satisfies the Maxwell equation and is a stoch-tic Iunctional of the Gaussian random surface, BO that it can be expressed in a vector form of the Wiener-Ito expansion in t e m of TE and TM waves and orthogonal functional. of the Gaussian random measures associated with the random cylindrical surface. In the analysis the random surface is modelled by an approximate boundaiy condition representing a perfectly conducting cylindrical surface with a slight roughness. The boundary condition on the random cylinder is transformed into a hierarchy of equations for the Wiener kernels which can be solved approximately. The random wave field for a plane-wave injection is obtained by summing these fields over m. From the stochastic representation of the electromagnetic field so obtained, various statistical characteristics can be calculated the coherent scattering amplitude. total coherent power flow, incoherent power flow, differential sections for coherent rcatlerhig and incoherent scattering, etc. The power conservation law is cast into a stochastic electromagnetic version of the optical theorem stating that the total scatteiing cross section is given by the imaginary part of the forward coherent scattering amplitude. Numerical calculations are made for a planewave injection with S-(TE) polarization. The case of p-(TM) polarization can be treated in a similar manner.  相似文献   

11.
Within the framework of an exact wave approach in the spatial-time domain, the one-dimensional stochastic problem of sound pulse scattering by a layered random medium is considered. On the basis of a unification of methods which has been developed by the authors, previously applied to the investigation of non-stationary deterministic wave problems and stochastic stationary wave problems, an analytical-numerical simulation of the behaviour of the backscattered field stochastic characteristics was carried out. Several forms of incident pulses and signals are analysed. We assume that random fluctuations of a medium are described by virtue of the Gaussian Markov process with an exponential correlation function. The most important parameters appearing in the problem are discussed; namely, the time scales of diffusion, pulse durations, the medium layer thickness or the largest observation time scale in comparison with the time scale of one correlation length for the case of a half-space. An exact pattern of the pulse backscattering processes is obtained. It is illustrated by the behaviour of the backscattered field statistical moments for all observation times which are of interest. It is shown that during the time interval when the main part of the pulse energy leaves the medium, the backscattered field is a substantially non-stationary process, having a non-zero mean value and an average intensity that decays according to a power law. There are various power indices for the different duration incident pulses, however, they are not the same as those of previous papers, which were obtained on the basis of an approximate and asymptotic analysis. We have also verified that the Gaussian law is valid for the probability density function of the backscattered field in the case of any incident pulse duration.  相似文献   

12.
Abstract

Within the framework of an exact wave approach in the spatial-time domain, the one-dimensional stochastic problem of sound pulse scattering by a layered random medium is considered. On the basis of a unification of methods which has been developed by the authors, previously applied to the investigation of non-stationary deterministic wave problems and stochastic stationary wave problems, an analytical-numerical simulation of the behaviour of the backscattered field stochastic characteristics was carried out. Several forms of incident pulses and signals are analysed. We assume that random fluctuations of a medium are described by virtue of the Gaussian Markov process with an exponential correlation function. The most important parameters appearing in the problem are discussed; namely, the time scales of diffusion, pulse durations, the medium layer thickness or the largest observation time scale in comparison with the time scale of one correlation length for the case of a half-space. An exact pattern of the pulse backscattering processes is obtained. It is illustrated by the behaviour of the backscattered field statistical moments for all observation times which are of interest. It is shown that during the time interval when the main part of the pulse energy leaves the medium, the backscattered field is a substantially non-stationary process, having a non-zero mean value and an average intensity that decays according to a power law. There are various power indices for the different duration incident pulses, however, they are not the same as those of previous papers, which were obtained on the basis of an approximate and asymptotic analysis. We have also verified that the Gaussian law is valid for the probability density function of the backscattered field in the case of any incident pulse duration.  相似文献   

13.
This paper deals with the scattering of an electromagnetic (EM) wave from a waveguide structure with a slightly rough surface. The waveguide structure is a dielectric film on a planar, perfectly conductive surface, and the top of the film is a two-dimensional (2D) homogeneous Gaussian random surface. The treatment is based on the stochastic functional theory where the random EM field is represented in terms of a Wiener - Hermite functional of the random surface. Numerical calculations show that enhanced backscattering and cross-polarization occur, but that no enhanced satellite peak appears for a 2D random surface, in contrast to the case of a 1D surface. The enhanced backscattering is caused by the interference of two double-scattering processes and is attributed to the existence of guided waves in the scattering structure.  相似文献   

14.
15.
This paper deals with a scalar plane wave scattering from a thin film with two-dimensional fluctuation by means of the stochastic functional approach. The refractive index of the thin film is written as a Gaussian random field in the transverse directions with infinite extent, and is invariant in the longitudinal direction with finite thickness. An explicit form of the random wavefield involving effects of multiple scattering is obtained in terms of a Wiener-Hermite expansion under small fluctuation. The first- and second-order incoherent scattering cross-sections are calculated numerically and illustrated in figures. In the incoherent scattering, scattering ring, quasi-anomalous scattering, enhanced scattering and gentle enhanced scattering may occur.  相似文献   

16.
Brewster's scattering angle in electromagnetic wave scattering from slightly random metal surfaces is investigated by means of the stochastic functional approach. While there are dips due to Brewster's scattering angle in scattering profiles from dielectric surfaces, Brewster's scattering angle does not exist in scattering from metal surfaces. However, the dips can exist in scattering from rough metal surfaces with the optically denser medium to convert evanescent wave into radiative wave.  相似文献   

17.
The propagation of radiation in a three-dimensional, inhomogeneous, stochastic, scattering medium and in an equivalent homogeneous medium has been investigated by the small-angle iteration method. The statistical structure of the scattering parameters of a three-dimensional medium has been described within the framework of the two-dimensional Poisson process and the binary Markov process. The analytical data obtained point to the fact that the three-dimensional inhomogeneity of a stochastic medium significantly influences the radiation transfer in it.  相似文献   

18.
Plane SH-wave propagation in periodically layered elastic composites with a damaged layer is investigated. Two different models are developed to approximate the damaged layer, namely, a periodic array of cracks and continuously distributed springs in the layer. In the first model, the total wave field in the elastic stack of layers with cracks is described as a sum of incident wave field modeled by the transfer matrix method and the scattered wave field governed by an integral representation in terms of the crack-opening-displacements on the crack-faces. The integral equation derived from the boundary conditions on the crack-faces is solved numerically by a Galerkin method. By using Bloch–Floquet theorem the crack-opening-displacements for a periodic array of cracks are expressed by the crack-opening-displacement on a reference crack. In the spring model, the spring constant is estimated by the material properties and the crack density and the modified transfer matrix method is used to compute the wave reflection and transmission coefficients. Numerical results obtained by both models are presented and discussed. Special attention of the analysis is devoted to wave transmissions and reflections, band gaps, wave localization and resonance phenomena due to damages. The influences of the damage types (periodic cracks and stochastic cracks approximated by distributed springs) on the wave field pattern and the band gaps are analyzed.  相似文献   

19.
建立了有限对一维铁磁性和非磁性层交错组成的周期系统, 应用布洛赫自旋波量子理论, 研究了该系统的基本性质及电子波函数散射特征对交错层数量依赖的关系. 研究发现: 在系统中电子波函数可表示为无限周期系统中转换矩阵特征向量的叠加或类布洛赫函数, 解此函数可得到任意层数系统的单色波散射的精确解. 在此基础上, 导出了电子波函数在周期系统中反射系数和透射系数对能量的依赖关系. 对光谱窗口的计算发现其势能和宽度几乎与全反射区域一样. 该系统由于高能量的传输和在电子自旋方向上对交换能的依赖而可能用于自旋滤波器. 关键词: 磁性多层膜 铁磁性和非磁性结构 电子散射 电子自旋滤波器  相似文献   

20.
Compressional waves in heterogeneous permeable media experience attenuation from both scattering and induced pore scale flow of the viscous saturating fluid. For a real, finely sampled sedimentary sequence consisting of 255 layers and covering 30 meters of depth, elastic and poroelastic computer models are applied to investigate the relative importance of scattering and fluid-flow attenuation. The computer models incorporate the known porosity, permeability, and elastic properties of the sand/shale sequence in a binary medium, plane layered structure. The modeled elastic scattering attenuation is well described by stochastic medium theory if two-length scale statistics are applied to reflect the relative thickness of the shale layers when compared to the sand layers. Under the poroelastic Biot/squirt flow model, fluid-flow attenuation from the moderate permeability (10(-14) m2) sands may be separated in the frequency domain from the attenuation due to the low permeability (5 x 10(-17) m2) shale layers. Based on these models, the overall attenuation is well approximated by the sum of the scattering attenuation from stochastic medium theory and the volume weighted average of the attenuations of the sequence member rocks. These results suggest that a high permeability network of sediments or fractures in a lower permeability host rock may have a distinct separable attenuation signature, even if the overall volume of high permeability material is low. Depending on the viscosity of the saturating fluid, the magnitude of the flow-based attenuation can dominate or be dominated by the scattering attenuation at typical sonic logging frequencies (approximately 10 kHz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号