首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
氢气因其能量密度高、零排放和可再生的特点被广泛认为是最有前景的能源.电解水是一种产生高纯氢气的有效途径.目前,高性能的促进水电解的催化剂主要是贵金属材料,例如贵金属铂.然而,高成本大大阻碍了贵金属材料在电催化水分解中的广泛应用.因此,我们致力于研究具有高活性的非贵金属催化剂.因为电催化水分解析氢反应更容易发生在质子浓度高的条件下,所以研究碱性条件下催化析氢比研究酸性条件下催化析氢更具挑战性.在工业应用中,酸性电解质溶液对仪器设备的腐蚀性比碱性溶液更大,因此研究应用在碱性溶液中的析氢催化剂更有发展前景.过渡金属磷化物被广泛地研究作为高性能析氢电催化剂,然而过渡金属磷化物作为析氢催化剂的稳定性通常不是很好.我们通过钼元素的引入,提高过渡金属磷化物作为析氢催化剂的稳定性.电化学催化效率同样受到材料形貌和导电性的影响.大的比表面积有利于暴露更多的活性位点,使活性位点与电解质溶液的接触更加充分,有利于催化剂和溶液之间的传质.据报道,金属磷化物具有良好的导电性是由于磷化物中存在金属-金属键.所以合成具有大比表面积形貌的过渡金属磷化物材料能够满足析氢电催化剂对比表面积和导电性的两个需求.界面效应是调节催化剂性能的一个有效方法.析氢催化剂常常存在吸附质子能力过强或过弱、稳定性不好等问题.这些问题可以通过界面效应来解决.本文通过形成磷化估和钼钴氧的界面来调节改善磷化钴表面原来的电子密度,以达到理想的氢吸附自由能;同时此界面效应还能起到稳定催化剂性能的作用.本文首先采用水热法合成了红毛丹状钼钴氧空心微米小球前驱体.在钼酸根离子的引导下,利用奥斯特瓦尔德熟化原理一步实现了红毛丹状空心结构.前驱体再以次亚磷酸钠为磷源进行气相磷化,得到产物红毛丹状磷化钴@钼钴氧空心微米小球.通过扫描电镜和透射电镜对其红毛丹状空心结构进行了表征.利用X射线衍射和X射线光电子能谱等手段表征了材料的物相组成和价态分布.电化学测试均使用电化学工作站完成.该材料在碱性电解质溶液中展现了极好的电化学催化析氢性能,在电流密度为10 mA cm^-2时对应的析氢过电位仅为62 mV.在1 MKOH溶液中10 mA cm^-2电流密度下测试55 h,过电位仅增大约17 mV,显示了非常强的碱性析氢稳定性.得益于磷化钴和钼钴氧之间的界面效应,以及特殊的三维空心结构,红毛丹状磷化钴@钼钴氧空心微米小球表现出优异的析氢催化性能和稳定性.  相似文献   

3.
氧析出反应(OER)是裂解水、二氧化碳还原、以及可充电的锌空电池等许多技术中重要的半反应,但受限于其迟缓的反应动力学,开发高效的氧析出催化剂迫在眉睫.在OER出反应中,性能较好的非贵金属催化剂主要是第四周期过渡金属的一些化合物,如氧化物、氢氧化物、硫化物、硒化物、磷化物等等.在这些材料中,镍铁双金属化合物被认为是最优的氧析出材料,尤其是镍铁层状双氢氧化物(Ni Fe-LDHs)它拥有较大的电化学活性面积以暴露较多活性位点,同时镍铁两种过渡金属元素存在协同效应,使得其具有良好的催化性能.然而,这一类材料的OER性能仍然有优化的空间.研究表明,将硫化物氧化得到的氢氧化物会有少量的硫元素残留,这种硫残留的氢氧化物拥有十分优异的OER性能.为了进一步认识硫的引入对Ni Fe-LDHs的OER行为的影响,本文通过水热法合成了硫掺杂的Ni Fe-LDHs,考察了硫的掺杂量对催化剂性能的影响,验证了微量硫的存在对Ni Fe-LDHs的OER性能的贡献.扫描电镜图片显示,水热合成的催化剂是厚度为几十纳米的薄片,拥有较高的比表面积, X射线荧光光谱分析证明合成的硫掺杂Ni Fe-LDHs中镍铁的元素比例...  相似文献   

4.
尖晶石钴矿(例如ACo2O4,其中A=Mn, Fe, Co, Ni, Cu或Zn的阳离子取代)是一种精确调控其电子结构/性质,并因此改善相应的电催化水分解析氧(OER)性能的有前途的策略.然而,有关它的基本原理和机制尚未完全理解.为了确定尖晶石氧化物在OER中的作用,已有实验和理论报道.例如, Prabu发现Ni3+离子取代Ni Co2O4的八面体位点可以显着提高OER性能;Hutchings报道OER性能提高源自Co3O4八面体Co3+的活性位;Wei研究发现Mn Co2O4八面体位置的Mn3+离子是OER的活性位点.尽管多数研究没有对此给出清晰的解释,但这些研究清楚地表明,尖晶石氧化物对OER的电催化性能在很大程度上取决于过渡金属阳离子(A)的化合价态及其在尖晶石结构中的相应位点分布.本文旨在合成具有同种形貌的尖晶石ACo2  相似文献   

5.
采用离子交换法与热处理相结合的方法,以ZIF67为前驱体,硫代乙酰胺为硫源,制备出硫化钴/多孔碳(CoS/C)复合催化材料,并探讨了硫化时间对复合催化剂的形貌、结构及其氧还原(ORR)性能的影响。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、N2吸附-脱附测定仪、X射线光电子能谱分析(XPS)、拉曼光谱仪(Raman)和旋转圆盘电极(RDE)技术表征催化剂的物理特征和电催化性能。研究结果显示,在碱性条件下该复合催化剂具有与20%(w/w)的商业Pt/C催化剂相媲美的ORR活性,其半波电位仅比Pt/C催化剂低31 mV。随着硫化时间的增加,硫化钴颗粒逐渐增大,催化剂中碳材料的无序程度出现先减小后增大的趋势。在硫化时间为10 min时,复合催化剂在0.1 mol·L-1KOH中表现出良好的电催化活性,且在ORR过程中复合催化剂的平均转移电子数可达到3.72,接近于4,说明氧气在该催化剂表面发生的是四电子转移过程。  相似文献   

6.
不断增加的能源需求和环境污染危机推动了替代高效能源转换和储存技术的广泛研究。电催化分解水具有潜在的应用前景,其可以利用电能获得清洁无污染的氢能。鉴于此,本论文通过不同浓度KOH浸泡超声的多壁碳纳米管(MWNTS)作为基底,CoCl2溶液为反应液,运用水热与固体磷化法得到负载有CoP的多壁碳纳米管材料。通过X-射线粉末衍射仪(XRD)、冷场发射扫描电子显微镜(SEM)、比表面及孔隙度分析(BET)对复合材料的晶型、形貌和比表面积进行了分析;通过电化学工作站对其相关电学性能进行了测试。实验结果表明在浓度为1 mol·L-1 KOH浸泡的碳纳米管吸附的CoP含量最高(CoP-MWNTS-1.0),且电催化性能最佳,其在10 mA·cm2的电流密度下过电势为196 mV,Tafel斜率为231.07 mV/dec。  相似文献   

7.
金属-空气电池具备诸多优势,譬如绿色环保、能量转化率高、启动快速、能量密度高、使用寿命和干态存储时间长等.与燃料电池相比,金属-空气电池结构简单,放电电压平稳,成本低,但依然存在一些制约发展的问题,如阴极催化剂.阴极催化剂在金属-空气电池中发挥催化氧还原反应(oxygen reduction reaction,ORR)和析氧反应(oxygen evolution reaction,OER)的关键作用.铂及其合金常用作ORR的单功能催化剂,而钌和铱等是目前OER催化效率最高的,但ORR活性很低,因此需要开发出一种廉价而又具备双功能催化作用的催化剂.单异原子掺杂的碳基催化剂的研究集中在ORR催化性能上,而多异原子共掺碳最近有研究表明具有双催化氧的性质,如氮磷共掺碳.在这些氮磷共掺的碳架中,氮磷共掺物起着OER催化作用,掺氮物为ORR催化的活性位点,而掺磷物起着强化作用.异原子掺杂负载的钴基催化剂(如掺氮还原氧化石墨烯载Co_3O_4)是近年来双功能催化剂研究的另一个热点.钴基催化剂有着催化ORR和OER的多价价态,然而其本身导电性能差,这一缺陷可通过杂化石墨化碳来弥补,石墨化碳有着优良的导电性能.据我们所知,目前仍没有关于氮磷共掺碳负载的Co_3O_4双催化氧的研究.我们合成了氮磷共掺碳(NPC)负载的Co_3O_4(Co_3O_4/NPC),并首次探索了其氧还原和析氧性能.Co_3O_4/NPC合成分两步进行.首先通过三聚氰胺与植酸之间的酯化或缩聚覆盖在导电炭黑颗粒表面,在保护气氛下焙烧得到NPC,然后经溶剂热反应以及空气中氧化合成Co_3O_4/NPC.催化剂的性能综合考虑了催化活性和稳定性两方面.采用线性扫描伏安法评估了OER和ORR的催化活性.对于OER,Co_3O_4/NPC的起始电势是0.54V(以饱和甘汞电极为参比电极),在0.80V时电流密度达到21.95mA/cm~2,均优于Co_3O_4/C和NPC.Co_3O_4/NPC的高效OER催化可归因于氮磷共掺物与Co_3O_4之间的协同作用.对于ORR,Co_3O_4/NPC的催化效率与商用Pt/C相近,它们的扩散极限电流密度分别为–4.49和–4.76mA/cm~2(E=–0.80V).在ORR过程中,Co_3O_4起到主要的催化作用.采用计时电流(电流-时间)法评估了催化剂的稳定性.经6h测定,对于OER,Co_3O_4/NPC剩46%电流;而对于ORR,剩95%电流.整体而言,Co_3O_4/NPC在OER和ORR中都表现出高的催化效率以及良好的稳定性.  相似文献   

8.
9.
汤婕  唐有根  刘东任 《催化学报》2006,27(6):501-505
 合成了四苯基卟啉及其钴配合物,考察了催化剂、溶剂及反应温度等因素对四苯基卟啉收率的影响,并用红外光谱和核磁共振氢谱对合成产物进行了结构表征. 以X射线光电子能谱为主要手段,研究了不同热处理温度对钴卟啉结构的影响,通过测定空气电极极化曲线研究了热处理对钴卟啉催化活性的影响. 结果表明,在200 ℃, 以对硝基苯甲酸为催化剂,硝基苯为溶剂时,四苯基卟啉收率达32%. 热处理能提高金属卟啉的催化活性, 600 ℃热处理后,钴卟啉环中的 Co-N4 结构趋于键断裂的临界状态,催化活性点增多,催化活性较好; 而800 ℃处理的钴卟啉中部分 Co-N4 键破裂,催化活性下降.  相似文献   

10.
采用一步水热法合成了硼、磷共掺杂铁钴材料(Fe-Co-B-P)。借助扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FT-IR)等技术对所合成材料的形貌、结构和组成进行表征。利用线性扫描伏安(LSV)、循环伏安(CV)、电化学阻抗谱(EIS)等技术研究材料电化学析氧反应(OER)性能。结果表明,Fe-Co-B-P表面疏松且粗糙,颗粒间有许多空隙。在电流密度为10和100 mA·cm-2时,其过电势分别为278和309 mV,Tafel斜率为24 mV·dec-1,说明该材料具有较优的电催化析氧性能。其在连续进行10 h的计时电位测试过程中,电势基本保持在1.55 V (vs RHE),表明该催化剂具有较好的电化学稳定性。这是由于铁钴双金属与硼、磷非金属之间的协同作用促进了电子的传递。  相似文献   

11.
通过简单的钴铁前躯体热分解法制备了系列一维Co_(1-x)Fe_xO_y(0≤x≤1)多孔纳米材料,并在1 mol·L~(-1) KOH溶液中研究了其电解水析氧催化性能。研究发现不同Fe掺杂量对材料的结构与电解水析氧催化性能有较大的影响,其中16%(n/n)Fe掺杂量的Co_(1-x)Fe_xO_y具有最优的析氧催化性能。在10 m A·cm~(-2)电流密度下其析氧过电位为345 mV,塔菲尔斜率为54 mV·dec~(-1),并表现出优异的析氧稳定性能。廉价、高效的Co_(1-x)Fe_xO_y多孔纳米棒材料有望成为优良的析氧催化剂用于电解水制氢。  相似文献   

12.
采用一步水热法合成了硼、磷共掺杂铁钴材料(Fe-Co-B-P)。借助扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FT-IR)等技术对所合成材料的形貌、结构和组成进行表征。利用线性扫描伏安(LSV)、循环伏安(CV)、电化学阻抗谱(EIS)等技术研究材料电化学析氧反应(OER)性能。结果表明,Fe-Co-B-P表面疏松且粗糙,颗粒间有许多空隙。在电流密度为10和100 mA·cm-2时,其过电势分别为278和309 mV,Tafel斜率为24 mV·dec-1,说明该材料具有较优的电催化析氧性能。其在连续进行10 h的计时电位测试过程中,电势基本保持在1.55 V(vs RHE),表明该催化剂具有较好的电化学稳定性。这是由于铁钴双金属与硼、磷非金属之间的协同作用促进了电子的传递。  相似文献   

13.
通过简单的钴铁前躯体热分解法制备了系列一维Co1-xFexOy(0≤x≤1)多孔纳米材料,并在1 mol·L-1 KOH溶液中研究了其电解水析氧催化性能。研究发现不同Fe掺杂量对材料的结构与电解水析氧催化性能有较大的影响,其中16%(n/n)Fe掺杂量的Co1-xFexOy具有最优的析氧催化性能。在10 mA·cm-2电流密度下其析氧过电位为345 mV,塔菲尔斜率为54 mV·dec-1,并表现出优异的析氧稳定性能。廉价、高效的Co1-xFexOy多孔纳米棒材料有望成为优良的析氧催化剂用于电解水制氢。  相似文献   

14.
实现质子交换膜燃料电池(PEMFC)的商业化应用亟需开发出低成本的高效氧还原(ORR)电催化剂以替代昂贵的Pt基材料.过去十余年,研究人员对由M-Nx活性位点和富缺陷碳质基底组成的热解M-N-C基单原子催化剂进行了深入的研究,以期进一步提高催化剂的性能并降低成本.其中, Fe-N-C基单原子催化剂表现出了较好的催化性能和巨大的应用潜力.近年来人们发现,在单原子催化剂中引入另一种金属原子组成的双原子催化剂具有特殊的几何构型和电子结构,有利于反应过程中原子间相互作用,使催化性能进一步提高.其中,在Fe-N-C基催化剂中引入另一种金属原子组成的Fe-M-N-C双原子催化剂(M代表金属)可以进一步激发Fe-N-C催化剂的本征活性,相关研究也吸引了越来越多的关注.本文综述了Fe-M-N-C基双原子催化剂催化ORR过程的研究进展.首先,讨论了双原子催化剂催化ORR的机制,其中引入的第二种金属原子通过协同和/或调制效应发挥作用.其后,系统总结了Fe-M-N-C的合成方法、表征技术和计算方法,以进一步推动双原子催化剂的研究.再后,根据金属原子之间的相互作用,将双原子催化剂分为Ma...  相似文献   

15.
杨刚  余志鹏  张杰  梁振兴 《催化学报》2018,39(5):914-919
随着工业的不断发展,化石燃料的大量使用导致全球大气二氧化碳浓度逐年升高.通过电还原将二氧化碳转化为燃料是实现碳循环经济最有前景的途径之一.目前,还原二氧化碳常用的方法包括热化学法,光化学法和电化学法.与另外两种方法相比,电催化还原二氧化碳具有条件简便,易于控制,转化率较高,材料易得,易于放大生产等优点,具备潜在的实际应用价值.电还原二氧化碳的催化材料主要分为金属材料,金属氧化物,有机分子,生物分子等.其中,以过渡金属催化剂的研究与应用最为普遍.我们发展了一种新型金属钴催化剂的制备方法,采用快捷,绿色的溶剂热方法,以正丁胺为保护剂,合成了具有花状形貌的金属钴催化剂.这种特殊形貌的金属钴催化剂相比体相的金属钴催化剂与层状的氢氧化钴材料,能够暴露更多的活性位点,在二氧化碳电还原反应中表现出极高的催化活性与选择性.我们采用循环伏安法和线性扫描伏安法(LSV)等电化学表征手段,进一步证明了先前其他课题组已报道过的通过溶剂热法制备得到的钴/钴氧化物二维材料在二氧化碳电催化还原过程中,金属钴/氧化钴界面的存在对二氧化碳还原反应具有决定性作用的观点.X射线衍射表明这种新型金属钴催化剂具有六方密堆积的晶体相,晶粒平均直径为17.3 nm.扫描电子显微镜直观地展示了其不同于体相的金属钴催化剂与层状的氢氧化钴材料,具有特殊的形貌.电化学表征结果显示花状金属钴催化剂比另外两种材料具有更正的起始电位(-0.7 V vs.SCE).不同扫描速度LSV研究表明,甲酸等其他还原产物的形成受二氧化碳传质控制影响.采用核磁共振分析不同电位下10 h恒电位电解产物,发现当电极电势为-0.85 V(vs.SCE)时,还原产物甲酸的法拉第效率达63.4%.另外,循环伏安曲线表明该催化剂不仅对二氧化碳还原反应具有极高的活性,同时,对还原产物的氧化也表现出极低的过电位与极高的反应活性,因此所开发催化剂可视为一类双效电催化剂.  相似文献   

16.
氢能源因其储量丰富、高效、零污染等特性而受到广泛关注.电解水产氢作为一种有效的获取氢能源的方式成为当前研究的重点.但由于电极表面反应过电势的存在极大增加了电解水的能耗,因此需要开发高效的电催化材料以提高电解水反应动力学.考虑到实际应用,设计和构筑在同一电解液中同时具有高效催化产氢和释氧能力的双功能催化材料更为重要且更具挑战.目前,越来越多的非贵金属基双功能催化材料被开发和报道,比如过渡金属硫化物、氧化物、层状双金属氢氧化物、碳化物、氮化物和磷化物等,其中又以磷化物的研究更为广泛.金属有机骨架化合物(MOFs)因其具有独特的性能(孔隙率高、超高比表面积、可调控的化学组分和孔道结构等)在能源转化等领域得到广泛应用.但是,基于MOFs材料转化的多组分过渡金属磷化物应用于全分解水体系的报道还比较少.先前的研究表明,优化催化材料的微纳结构和化学组成是提高材料催化性能的关键.我们利用三步法(晶体生长、自组装和磷化)设计并制备了一种基于MOFs转化的新型分级纳米复合材料CoP@ZnFeP.透射电子显微镜(TEM)结果显示,自组装形成的花状Co3O4@Fe-MOF-5中空结构在磷化后形貌能够很好地保持.X射线衍射(XRD)表明, CoP@ZnFeP纳米复合物是由大量的混合纳米晶体组成,主要包括Co2P, ZnP2和Fe2P.在碱性(1.0mol/L KOH)条件下, CoP@ZnFeP纳米复合物表现出优异的催化产氢(HER)和释氧(OER)性能,其释氢和产氧的启动电位分别为–50和148m V(vs.RHE),相应的Tafel斜率分别为76和53.9m V/decade.优异的电催化性能主要归功于复合材料的多级纳米结构组元(纳米粒子、纳米笼和纳米管),其有序的多孔结构和大的比表面积有利于电解液的渗透、气体的扩散和电子的转移.作为对比,我们利用相似方法制备了CoP和ZnFeP纳米粒子的机械混合物(CoP/ZnFeP).测试数据表明, CoP@ZnFeP分级复合材料的催化性能优于CoP/ZnFeP机械混合物.鉴于CoP@ZnFeP复合材料优异的催化性能,我们将其应用于全分解水体系.在两电极体系中,达到10m A/cm~2电流密度仅需1.6V电压,表明材料具有优异的全分解水性能.同时该复合物也显示出较好的稳定性,经过24h连续水解后,电解电位仅升高70m V.但同时我们也注意到电极表面剧烈产生的气泡会对电极材料的稳定性有严重影响.此项研究可为设计高效的非贵金属催化材料应用于能源转化和储存等领域提供较好的思路和借鉴.  相似文献   

17.
金属-空气电池因其高效率和便携性受到广泛关注.然而,氧还原反应(ORR)的高能垒和缓慢的动力学导致其输出功率低.尽管贵金属铂基材料具有较高的ORR活性,但其在工业上的大规模应用受到高成本的制约.因此,迫切需要以储量丰富的非贵金属为原料,开发具有低成本、高性能和耐用性的催化剂.近年来,单原子过渡金属与氮共掺杂碳材料(M-N-C)成为替代贵金属催化剂的理想材料.理论模拟和实验结果均表明,单原子Fe/Co-N-C催化剂具有良好的ORR活性,其中FeN4和CoN4构型被认为是主要活性位点.此外,含有相邻金属位点的双金属单原子催化剂具有加速ORR动力学的巨大潜力.通过对ORR中间体的桥式-顺式吸附,双金属位点可以促进O-O键的裂解,从而提高催化活性.除固有活性外,双金属位点可减少ORR过程中含氧中间体对M-N键的攻击,提高M-N-C对ORR的耐久性和工业应用潜力.因此,近年来,研究者开始探索双金属单原子催化剂的合成和电催化性能,发现Fe-Co, Fe-Mn, Fe-Cu, Co-Zn和Co-Pt双位点可以有效催化ORR.为进一步提高ORR活性,需要合理...  相似文献   

18.
众所周知,太阳能是一种清洁,可持续的能源.如何更有效地利用太阳能来解决人类面临的能源和环境问题已成为近几十年来科研工作者们的研究热点.半导体光催化技术被认为是人工光合作用的主要发现.光催化技术是解决日益严重的能源短缺和环境污染问题的有效途径,越来越受到人们的关注.氢作为理想的清洁能源,具有燃烧价值高,无污染的优点.光催化制氢技术的应用是最具发展性的制氢方法之一.因此,有效光催化剂的设计和开发显得十分重要.由于光催化析氢反应(HER)主要是半反应,因此必须引入牺牲试剂.同时,光敏剂的存在加速了光催化剂对光的吸收.在这种情况下研究光催化材料的结构和性质之间的关系至关重要,它能指导人们开发低成本,高稳定性,高活性的析氢光催化剂.本文首次成功地合成了以ZIF-9(Co-MOFs)作为前驱体的CoP纳米粒子,并通过简单的化学沉淀法制备了CeVO4光催化剂.深入研究了CoP,CeVO4及其复合催化剂的光催化制氢性能.发现CoP/CeVO4复合催化剂在染料敏化条件下表现出优异的光催化活性.当CoP和CeVO4结合质量比为1:1时,所得样品V1C1的复合光催化活性对于析氢最佳,在5 h内氢产生量达到444.6μmol.由于CeVO4和CoP偶联是一步完成.CeVO4牢固地粘附在CoP颗粒的表面上,形成“小点”到“大点”异质结.XRD,XPS,SEM,EDX和TEM的结果显示,CoP和CeVO4纳米颗粒的形成和复合物的结构.基于对Mott-Schottky曲线,UV-vis漫射光谱,光电流-时间曲线,Tafel曲线,奈奎斯特曲线,线性伏安曲线和稳态/瞬态荧光测量结果表明,CoP/CeVO4高效析氢的原因是CoP和CeVO4复合后存在肖特基势垒,导致能带发生弯曲,并且CoP与CeVO4之间异质结所形成的内建电场能加速电荷转移.此外,CoP和CeVO4之间独特的协同效应为彼此提供了新的析氢活性中心.提高了载流子分离效率,降低了光生载流子复合率.因此,CoP/CeVO4复合催化剂具有优异的光催化析氢活性.本文为过渡金属磷化物光催化剂的电子结构和载流子行为的调控提供了新的策略.  相似文献   

19.
燃料电池可以直接将化学能转化为电能,是一种极具前景的能量转换设备.目前,铂碳是燃料电池阴极氧还原反应(ORR)常用催化剂,但是铂储量低、价格昂贵、稳定性差且容易受CO毒化,极大地限制了其在燃料电池商业化中的应用.因此,探索价格低廉、性能优越的非贵金属氧还原催化剂显得尤为重要.大量研究发现,碳基材料具有优越的氧还原性能和良好的电化学稳定性.同时,自然界的生物质种类丰富,是很好的碳基材料来源.本文选取日常生活中最常见的富碳生物质废纸作为碳源,二氰二胺和乙酰丙酮钴分别作为氮源和钴源,经过特定气氛下的梯度升温制得非贵金属钴、氮共掺杂碳纳米管负载多孔碳氧还原催化剂(Co/N/CNT@PC-800).考察了杂原子N掺杂、过渡金属Co掺杂对材料形貌和性能的影响,采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、拉曼(Raman)光谱、氮气吸附-脱附和X射线光电子能谱(XPS)等表征方法探究了Co/N/CNT@PC-800材料的组成与结构,通过循环伏安法(CV)以及线性扫描伏安法(LSV)等电化学测试探究了其氧还原反应性能.SEM和TEM结果表明,Co/N/CNT@PC-800材料为表面生长着大量碳纳米管的多孔碳结构.这是因为二氰二胺和钴引入后,钴催化二氰二胺转化成碳纳米管.金属纳米粒子被封装在碳层之间和碳纳米管中而得到有效的保护,使之不易被酸腐蚀.同时,Co和N元素可以形成更多的活性位点(Co–Nx),增强材料ORR活性.SEM和氮气吸附-脱附结果显示,掺杂Co后,材料的介孔结构会进一步增加,形成微孔/介孔结构.多孔结构可以增强ORR相关物质(O2,H+,OH.,H2O)的传质速率,提升反应速率,达到增强ORR活性的效果.除此之外,多孔的结构也可以促进活性位点的暴露,进而提升材料的ORR性能.XPS结果显示,Co/N/CNT@PC-800材料中N主要以吡啶氮和石墨氮两种形式存在,而这两种类型的氮有利于促进ORR的进行.Raman光谱结果显示,在引入N和Co元素后,材料的缺陷结构有所增加,因而有利于电催化氧还原反应性能的提升.另外,LSV测试结果表明,在引入Co或者N后,材料催化ORR的起始电位、半波电位、极限电流密度均有小幅改善;同时引入Co和N后,Co/N/CNT@PC-800材料催化ORR的起始电位(0.005 V vs.Ag/AgCl)、半波电位(.0.173 V vs.Ag/AgCl)、极限电流密度(.4.117 mA cm.2)均有较大幅度的改善.通过Koutecky-Levich(K-L)方程计算以及旋转环盘电极测得的氧还原极化曲线结果均表明,Co/N/CNT@PC-800材料的氧还原反应是通过准四电子反应转移路径进行.此外,循环(3000圈CV)稳定性测试结果证明,Co/N/CNT@PC-800材料比商业化的Pt/C具有更好的稳定性.总之,本文采用简单的梯度升温法制备出非贵金属钴、氮共掺杂的碳基氧还原催化剂(Co/N/CNT@PC-800),为探索利用生物质制备电催化剂用于燃料电池提供了一种可供选择的途径.  相似文献   

20.
齐静  陈明星  张伟  曹睿 《催化学报》2022,(7):1955-1962
钴基材料被认为是有望替代贵金属材料的电催化水氧化反应催化剂之一.研究发现,高活性的钴基催化剂常发生表面重构行为,深入研究表面重构行为对于阐明真实的催化活性位点和指导合成高性能的电催化剂至关重要.但是受到复杂的催化剂结构以及多种性能影响因素限制,钴基材料的配位结构对表面重构和电催化水氧化性能影响仍不清晰.基于此,本文设计了具有配位对称结构和不对称结构的两种磷酸钴基材料用于电催化水氧化反应,探索配位对称性对表面重构和水氧化性能的影响.本文通过调控共沉淀反应中磷酸铵的用量,合成了具有对称配位结构的磷酸钴材料和不对称配位结构的磷酸钴铵材料.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和物理吸附等技术表征了两种材料的物理性质.通过线性扫描法,循环伏安法和恒电位电解法等电化学方法测定两种材料的电催化水氧化活性和稳定性.采用原位电化学阻抗图谱、拉曼光谱(Raman)和XPS图分析水氧化反应中的表面重构过程.晶体结构图表明,磷酸钴材料和磷酸钴铵材料均由六配位的Co O6八面体组成.其中,磷酸钴结构中钴中心由四个水分子和两个磷酸基团或两个水分子...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号