首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着世界经济的迅猛发展,人们生活水平飞速提高的同时,能源短缺和环境污染成为当前人类可持续发展过程中的两大严峻问题.氢作为一种能源载体,能量密度高,可储可运,且燃烧后唯一产物是水,不污染环境,被认为是今后理想的无污染可再生替代能源.20世纪60年代末,日本学者Fujishima和Honda发现光照n-型半导体TiO_2电极可导致水分解,使人们认识到了利用半导体光催化分解水制氢可直接将太阳能转化为氢能的可行性,利用半导体光催化分解水制氢逐渐成为能源领域的研究热点之一.然而,单相光催化材料的光生电子和空穴复合仍然严重,光催化制氢效率低,无法满足实际生产需要;另外,单相光催化材料不能同时具备较窄的禁带、较负的导带和较正的价带.近年来,国内外学者在新型光催化材料的探索、合成和改性以及光催化理论等领域开展了大量研究工作.不断有不同种类的半导体材料被研究和发展为光催化分解水制氢催化材料.例如,具有可见光催化活性的阴、阳离子掺杂TiO_2,具有可见光下光解纯水能力的In_(0.9)Ni_(0.1)TaO_4,在256 nm紫外光辐照下量子效率达到56%的镧掺杂NaTaO_3,CdS以及(AgIn)_xZn_(2(1-x))S_2等.在现有的光催化材料中,单相光催化材料可以通过掺杂、形貌控制合成、晶面控制合成、染料敏化和表面修饰等提高其光催化活性.复合型光催化材料则能通过组合不同电子结构的半导体材料并调控其光生载流子迁移获得优异的光催化制氢性能,大幅拓展了光催化制氢材料的研究范围和提升了光催化制氢性能.构建异质结能够有效提高光生电子-空穴分离效率,促使更多的光生电子参与光催化制氢反应,提高其氧化还原能力,从而提高其光催化制氢效率.在I-型纳米异质结中,半导体A的价带高于半导体B,而导带则是前者高于后者,光照时,光生电子-空穴对的迁移速率是不同的,延长了光生电子的寿命,从而提高了材料的光催化活性.但是在I-型异质结中,电子和空穴都集中在B半导体上,这样光生电子-空穴对的复合几率仍然很高.II-型异质结中电子和空穴的富集处各不相同,因此使用范围也更广泛一些.光辐照激发时,光生电子从半导体B的导带迁移到半导体A的导带上,而空穴则从半导体A的价带向半导体B的价带上转移,从而形成了载流子的空间隔离,有效抑制其复合.但是,在这个类型的异质结中,光生电子转移到了相对位置较低的导带,而空穴则转移到相对位置较高的价带,这样就降低了光生电子的还原能力和空穴的氧化能力.pn型异质结中,在两种半导体相互接触时,由于电子-空穴对的扩散作用,两种半导体的能带发生漂移,其中p型上移,n型下移.而且在两种半导体异质结的界面处会产生空间电荷层,在这个电荷层的作用下,在异质结界面上形成内建电场.在合适波长的光源辐照的条件下,两种半导体同时被激发,光生电子在内建电场的作用下,从p型半导体快速迁移到n型半导体上,而n型半导体中留在价带上的空穴则快速迁移到p型半导体上,这样光生电子-空穴对就得到了有效的分离.在以Z型载流子迁移为主导的异质结构材料中摈弃了中间媒介,通过控制界面的载流子迁移使低能量的光生电子与空穴直接复合保留高能量的光生电子-空穴,从而提高了材料的光催化效率.本文介绍了纳米异质结光催化剂在设计合成方面的研究进展,总结了几种纳米异质结(I-型、II-型、pn-型及Z-型)的光催化原理及其在制取氢气方面的研究进展,并展望了研究发展方向.期望本文能够加深研究者对该领域的理解,为今后高效光催化材料的设计提供帮助和指导.  相似文献   

2.
纳米异质结光催化剂制氢研究进展   总被引:2,自引:0,他引:2  
随着世界经济的迅猛发展,人们生活水平飞速提高的同时,能源短缺和环境污染成为当前人类可持续发展过程中的两大严峻问题.氢作为一种能源载体,能量密度高,可储可运,且燃烧后唯一产物是水,不污染环境,被认为是今后理想的无污染可再生替代能源.20世纪60年代末,日本学者Fujishima和Honda发现光照n-型半导体TiO2电极可导致水分解,使人们认识到了利用半导体光催化分解水制氢可直接将太阳能转化为氢能的可行性,利用半导体光催化分解水制氢逐渐成为能源领域的研究热点之一.然而,单相光催化材料的光生电子和空穴复合仍然严重,光催化制氢效率低,无法满足实际生产需要;另外,单相光催化材料不能同时具备较窄的禁带、较负的导带和较正的价带.近年来,国内外学者在新型光催化材料的探索、合成和改性以及光催化理论等领域开展了大量研究工作.不断有不同种类的半导体材料被研究和发展为光催化分解水制氢催化材料.例如,具有可见光催化活性的阴、阳离子掺杂TiO2,具有可见光下光解纯水能力的In0.9Ni0.1TaO4,在256 nm紫外光辐照下量子效率达到56%的镧掺杂NaTaO3,CdS以及(AgIn)xZn2(1-x)S2等.在现有的光催化材料中,单相光催化材料可以通过掺杂、形貌控制合成、晶面控制合成、染料敏化和表面修饰等提高其光催化活性.复合型光催化材料则能通过组合不同电子结构的半导体材料并调控其光生载流子迁移获得优异的光催化制氢性能,大幅拓展了光催化制氢材料的研究范围和提升了光催化制氢性能.构建异质结能够有效提高光生电子-空穴分离效率,促使更多的光生电子参与光催化制氢反应,提高其氧化还原能力,从而提高其光催化制氢效率.在I-型纳米异质结中,半导体A的价带高于半导体B,而导带则是前者高于后者,光照时,光生电子-空穴对的迁移速率是不同的,延长了光生电子的寿命,从而提高了材料的光催化活性.但是在I-型异质结中,电子和空穴都集中在B半导体上,这样光生电子-空穴对的复合几率仍然很高.II-型异质结中电子和空穴的富集处各不相同,因此使用范围也更广泛一些.光辐照激发时,光生电子从半导体B的导带迁移到半导体A的导带上,而空穴则从半导体A的价带向半导体B的价带上转移,从而形成了载流子的空间隔离,有效抑制其复合.但是,在这个类型的异质结中,光生电子转移到了相对位置较低的导带,而空穴则转移到相对位置较高的价带,这样就降低了光生电子的还原能力和空穴的氧化能力.pn型异质结中,在两种半导体相互接触时,由于电子-空穴对的扩散作用,两种半导体的能带发生漂移,其中p型上移,n型下移.而且在两种半导体异质结的界面处会产生空间电荷层,在这个电荷层的作用下,在异质结界面上形成内建电场.在合适波长的光源辐照的条件下,两种半导体同时被激发,光生电子在内建电场的作用下,从p型半导体快速迁移到n型半导体上,而n型半导体中留在价带上的空穴则快速迁移到p型半导体上,这样光生电子-空穴对就得到了有效的分离.在以Z型载流子迁移为主导的异质结构材料中摈弃了中间媒介,通过控制界面的载流子迁移使低能量的光生电子与空穴直接复合保留高能量的光生电子-空穴,从而提高了材料的光催化效率.本文介绍了纳米异质结光催化剂在设计合成方面的研究进展,总结了几种纳米异质结(I-型、II-型、pn-型及Z-型)的光催化原理及其在制取氢气方面的研究进展,并展望了研究发展方向.期望本文能够加深研究者对该领域的理解,为今后高效光催化材料的设计提供帮助和指导.  相似文献   

3.
宋琰  李朝升  邹志刚 《无机化学学报》2014,30(11):2484-2488
研究了LiNbO3(001)、(100)和(110)晶面的光催化产氢性能。(001)、(100)和(110)3个晶面光催化产氢性能之比为7.8∶1.3∶1.0。LiNbO3[001]晶向存在电偶极矩和自发极化,有利于增加光生电子和空穴的分离效率,减少光生电子和空穴的复合,提高LiNbO3(001)面的光催化活性。LiNbO3(001)面的空穴有效质量最小,有利于光生空穴的迁移,从而减少光生电子和空穴的复合,也有利于光催化性能的提高。  相似文献   

4.
<正>为了提升光催化还原反应的效率,通常需要在反应体系中加入空穴牺牲剂来消耗光生空穴,从而避免光生空穴对还原反应的影响。但这种方法增加了处理成本,容易造成水体的二次污染,不适用于饮用水处理。贵金属/过渡金属具有较高的功函数,与光催化材料结合形成异质结,能够捕获光生电子,增强光生电子与空穴的  相似文献   

5.
金属-有机框架材料(metal-organic frameworks,MOFs)是一类基于金属离子与有机配体组装而成的配位多孔材料,具有高比表面积、多活性位点、结构可剪裁、易功能化等特征.相当一部分MOFs能够表现出类半导体的行为,其有序结构不利于光生电子-空穴复合中心的产生,同时其多孔特性更是便于光生载流子的快速/高效利用.因此,近年来MOFs材料在光催化领域受到越来越广泛的关注与研究.本文从光催化反应类型出发,包括光催化染料降解、光催化有机物转化、光催化裂解水产氢、光催化水氧化、光催化二氧化碳还原反应等,总结了近年来MOFs及其复合催化剂设计合成及在光催化领域的应用研究进展,同时简要介绍了部分MOF衍生材料在光催化领域的应用,并对MOFs材料在光催化领域的应用前景进行了展望.  相似文献   

6.
碘氧铋(Bi OI)半导体光催化剂具有独特的层状结构与宽的光吸收范围,在光催化降解污染物方面表现出较好的催化活性.然而,较窄的带隙加快了光生电子空穴对的复合,大大限制了Bi OI光催化剂的发展应用.研究表明,通过富铋策略调控卤氧铋材料中的卤素含量,可以实现对其能带结构的可控调控.本文通过构筑氮磷共掺杂石墨烯量子点/Bi_5O_7I(NPG/Bi_5O_7I)复合光催化材料,不仅提高了Bi_5O_7I材料对可见光的吸收能力,同时增大了光生电子空穴对的分离效率,显著提升了NPG/Bi_5O_7I复合材料的光催化降解性能.本实验通过简单的离子液体辅助溶剂热方法合成了NPG/Bi_5O_7I复合光催化材料.采用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和高分辨率透射电子显微镜(HR-TEM)等表征手段证明已经成功地制备了NPG/Bi_5O_7I复合材料.同时,以盐酸四环素(TC)和恩诺沙星(ENR)为目标污染物探究了所制备NPG/Bi_5O_7I材料的光催化活性.实验结果表明,在相同的实验条件下,相对于Bi_5O_7I纳米棒, NPG/Bi_5O_7I复合材料具有更高的光催化活性.光照120 min后,相比于Bi_5O_7I单体材料, NPG/Bi_5O_7I复合材料对TC的去除率提高了54.4%, ENR的去除率则提高了约54.9%.紫外可见漫反射(DRS)、稳态荧光(FL)、光电流和阻抗(EIS)结果表明, NPG的引入能够显著拓宽Bi_5O_7I材料的光吸收范围,提高材料光生载流子的分离效率,抑制其重组,大大提升材料的光催化降解活性.电子顺磁共振(ESR)、X射线光电子能谱分析(XPS)和自由基捕获实验结果进一步验证了NPG/Bi_5O_7I复合材料光催化性能提高的可能机制.当可见光照射时, Bi_5O_7I价带上的电子被激发跃迁至导带并在价带留下空穴;跃迁至导带的光生电子则迅速从Bi_5O_7I转移到NPG,从而有效地抑制了光生电子空穴对的重组.随着光照时间的延长,聚集在NPG上的电子将O_2还原为·O_2~–,产生的·O_2~–进一步将有机污染物降解为小分子无机物.与此同时, Bi_5O_7I价带上的空穴具有极强的氧化能力,可以直接将目标污染物矿化降解.  相似文献   

7.
半导体光催化剂是一种极具前景的绿色催化剂,广泛用于污染物降解、水解制氢和有机合成等领域,有望利用太阳能来解决能源和环境问题,是当前的研究前沿和热点.然而,单组分半导体光催化剂的光生电子和空穴容易复合,导致量子效率差和光催化效率低.近年人们发现,将两种或多种催化材料结合,构建异质结光催化体系可有效促进光生电子-空穴分离.但传统的异质结体系中光生电子的还原性和光生空穴的氧化性通常在电荷转移后变弱,因此,很难同时具备高电荷转移效率和强氧化还原能力.研究发现,构建Z型异质结光催化体系不仅可以减少本体电子-空穴的复合,使其在不同半导体材料上实现空间分离,具有光谱响应宽、电荷分离效率高和稳定性高等优势,而且能保持良好的氧化还原能力.在半导体材料领域,石墨相氮化碳(g-C3N4)作为一种无金属聚合物半导体,具有良好的热化学稳定性、电学和光学特性,但存在量子效率低和适用范围窄等局限性.而五氧化二钒(V2O5)是一种重要的过渡金属氧化物半导体,由于具有良好的电学和光学性能被广泛用于锂离子电池、气敏传感器和光电器件.V...  相似文献   

8.
钼掺杂二氧化钛复合膜的光催化及光电性质   总被引:1,自引:0,他引:1  
二氧化钛光催化反应在光电转换、光化学合成、光催化降解环境污染物及自清洁材料的制备等方面具有广阔的应用前景。但二氧化钛只有在波长小于378砌的紫外光的激发下,价带电子才能跃迁到导带上,形成光生电子与空穴的分离,对太阳能的利用率不高。  相似文献   

9.
冷文华  朱红乔 《电化学》2013,19(5):437-443
半导体光催化在环境保护和未来新能源开发等领域中具有重要的作用和意义. 由于参与光催化反应的主体是光生载流子,并涉及光生电子和空穴的界面转移与复合,(光)电化学方法是研究光催化反应微观动力学和机理的重要手段. 本文主要介绍本课题组应用这类研究方法在液相光催化去污方面所获得的部分研究结果,并对今后研究重点提出了某些看法.  相似文献   

10.
半导体光催化技术因其能够完全矿化和降解废水以及废气中的各种有机和无机污染物而受到越来越多研究者关注.尽管TiO2作为光催化剂显示了良好的应用前景,但其只对紫外光响应,该部分能量大约仅占太阳光谱的5%,从而限制了其实际应用.因此,开发新型可见光响应光催化剂成为光催化领域的研究焦点之一.石墨相氮化碳(g-C3N4)作为一种光催化材料,由于具有良好的热和化学稳定性以及可见光响应而备受关注.然而,单纯的g-C3N4由于光生电荷载流子易复合,光催化效果并不理想.为进一步提高g-C3N4的光催化活性,构建g-C3N4基异质结复合光催化材料被认为是增强g-C3N4光生电子-空穴分离效率的有效方法.CdMoO4作为一种光催化材料,与g-C3N4匹配的能带有利于光生电子-空穴的分离,从而提高g-C3N4的光催化活性.本文通过便利的原位沉淀-煅烧过程,制备了新颖的CdMoO4/g-C3N4异质复合光催化材料.复合材料的晶相构成、形貌、表面化学组分和光学特性等通过相应的分析测试手段进行表征.光催化活性通过可见光下催化降解罗丹明B水溶液来评价.结果显示,将CdMoO4沉积在g-C3N4表面形成复合材料可明显提高光催化活性,且当CdMoO4含量为4.8 wt%时达到最佳的光催化活性.这种显著增强的光催化活性可能是由于CdMoO4/g-C3N4复合物能够有效地传输和分离光生电荷载流子,从而抑制了光生电子-空穴的复合.电化学阻抗、瞬态光电流和稳定荧光光谱测试结果证实,通过CdMoO4与g-C3N4复合可有效增强电荷分离效率.此外,活性物捕获实验表明,在光催化过程中空穴(h+)和超氧自由基(?O2?)是主要活性物种.根据莫托-肖特基实验并结合紫外-可见漫反射吸收光谱,得到了单纯g-C3N4和CdMoO4的能带结构,提出了形成的II型异质结有助于增强光催化活性的机理.  相似文献   

11.
作为一种非金属聚合半导体,石墨相氮化碳(g-C3N4)具有特殊的能带结构、可见光响应能力以及优良的物理化学性质以及生产成本低等特点,因而已成为目前光催化领域的研究热点.然而,由于g-C3N4被光激发的电子与空穴极易复合,导致g-C3N4材料的光催化性能并不理想.而助剂修饰是实现光生载流子有效分离以提高光催化活性的有效途径.众所周知,贵金属Pt可以作为光催化产氢的反应位点,但高昂的成本限制了它的实际应用.所以,开发高效的非贵金属助剂很有必要.近年来,NiS作为优良的电子助剂在光催化领域受到广泛关注.大量研究表明,NiS可以作为g-C3N4的产氢活性位点用于提高其光催化产氢性能.NiS助剂主要是通过水热、煅烧和液相沉淀的方法修饰在g-C3N4的表面上.相较而言,助剂的光沉积方法具有一些独特的优势,例如节能、环保、简易并且能够实现其原位牢固地沉积在光催化剂的表面.然而g-C3N4光生电子和空穴强还原和氧化能力容易导致像Ni^2+的还原和S^2-的氧化等副反应发生,因此NiS助剂很难光沉积在g-C3N4材料表面.本文采用硫调控的光沉积法成功合成了NiS/g-C3N4光催化材料,该法利用g-C3N4在光照条件下产生的光生电子结合S以及Ni^2+生成NiS,然后原位沉积在g-C3N4表面.由于E0(S/NiS)(0.096 V)比E0(Ni^2+/Ni)(-0.23 V)更正,所以NiS优先原位沉积在g-C3N4表面.因此,硫调控的光沉积法促进了NiS的生成,并抑制了金属Ni等副反应的形成.通过X射线光电子能谱分析NiS/g-C3N4的表面化学态,表明该方法能成功地将NiS修饰在g-C3N4的表面,这也得到透射电镜和高分辨透射电镜结果的证实.光催化产氢的结果表明,NiS/g-C3N4光催化剂实现了良好的光催化性能,其最优产氢速率(244μmol h^?1 g^?1)接近于1 wt%Pt/g-C3N4(316μmol h^?1 g^?1).这是因为硫调控的光沉积法实现NiS助剂在g-C3N4表面的修饰,从而促进光生电子与空穴的有效分离,进而提高光催化制氢效率.此外,在该方法中,NiS的形成通常在g-C3N4光生电子的表面传输位点上,因此也能够使NiS提供更多的活性位点以提高界面产氢催化反应速率.电化学表征结果也进一步证明NiS/g-C3N4光催化剂加快了电子与空穴的分离和转移.更重要的是,这种简易且通用的方法还可以实现CoSx,CuSx,AgSx对g-C3N4的助剂修饰,并且都提高了g-C3N4的光催化产氢性能,表明该方法具有一定的普适性,为高效光催化材料的合成提供了新的思路.  相似文献   

12.
<正>人工光催化还原二氧化碳是利用太阳能激发半导体光催化材料产生光生电子与空穴,诱发氧化-还原反应将CO_2和H_2O转化为碳氢燃料,是一种转化和利用CO_2的新途径。与其它方法相比,该过程在常温常压下进行,直接利用太阳能,可实现碳的循环使用,因而被认为是最具前景的CO_2转化方法之一~(1,2)。近年来,研究表明一些氧化物和硫化物等具有光还原CO_2活性,但这些材料低的光转换效率以及严重的光腐蚀限制了其进一步的应  相似文献   

13.
高效TiO2基光催化材料的开发一直是催化领域的研究热点,主要的策略是如何有效地分离光生载流子.制备多晶相的TiO2材料可引入异质/相结结构使电子与空穴朝不同方向移动,从而避免电子与空穴复合;另外,在TiO2中掺杂其他金属或非金属也可以有效地降低电子与空穴的复合率,掺杂的元素作为电子捕获阱俘获光生电子,以实现电子空穴的有效分离.近些年,作为一种全新的掺杂剂,氧空穴可以有效改善TiO2的光催化活性,所制TiO2具有可见光的全光谱吸收能力,因此该类TiO2呈现出黑色.通过上述方法均可以制备出高活性TiO2基光催化材料,如果能够将这些方法耦合一起,则可能制备出活性更高的光催化剂.因此,本文将异相结结构和空穴掺杂耦合起来,用多孔钛酸盐衍生物在H2中高温焙烧制得一种全新的黑色TiO2(B)/锐钛矿双晶TiO2–x纳米纤维.不同于其他TiO2基光催化材料,该样品仅由Ti和O元素组成,通过Ti和O元素的组合,形成了双晶结构和空穴掺杂两种特殊的结构,借助场发射(FESEM)、拉曼光谱(Raman)、氮气物理吸脱附、X射线光电子能谱(XPS)、热重(TG)、紫外可见漫反射光谱(UV-Vis)和荧光光谱(PL)等表征分析了样品的结构及其光催化性能间构效关系. FESEM结果显示,黑色TiO2(B)/锐钛矿双晶TiO2–x为长1–5mm、宽0.2mm的纤维结构, Raman结果表明,锐钛矿相在特征波段(140 cm–1左右)和TiO2(B)的特征波段(220–260 cm–1)均发生蓝移,说明该两相中均存在氧空穴;该样表面未检测到Ti3+,因此氧空穴可能分散在TiO2(B)和锐钛矿相的体相中.根据黑色TiO2(B)/锐钛矿双晶TiO2–x和白色TiO2(B)/锐钛矿双晶TiO2的失重差,估算出前者的O/Ti原子比为1.97.光催化降解甲基橙实验结果显示,黑色TiO2(B)/锐钛矿双晶TiO2–x的光催化活性是白色双晶TiO2的4.2倍,锐钛矿TiO2的10.5倍,且连续反应10次后未出现失活现象,显示出了良好的光催化稳定性.前期,我们已经证明了白色TiO2(B)/锐钛矿双晶TiO2由于具有TiO2(B)和锐钛矿的异相结结构,致使其电子空穴有效地分离,从而表现出优异的光催化活性;本文的PL结果显示,由于氧空穴的引入,异相结与氧空穴两者共同作用,进一步促进了黑色TiO2(B)/锐钛矿双晶TiO2–x电子与空穴的有效分离,因此黑色TiO2(B)/锐钛矿双晶TiO2–x表现出高的光催化活性.由于其特殊的结构,黑色TiO2(B)/锐钛矿双晶TiO2–x纳米纤维将在环境与能源领域表现出良好的应用前景.  相似文献   

14.
随着现代工业的迅猛发展,人类面临的能源危机和环境污染问题日益严重.光催化剂技术有望利用太阳能同时解决这两大问题,其关键在于设计高效的光催化体系.传统光催化材料TiO2具有价廉、活性高及稳定性好等优点,然而其带隙宽(Eg=3.2 eV),仅能利用占太阳光谱约4%的紫外光,从而限制其利用太阳能.可见光占太阳光谱的40%以上,因此开发可见光响应的光催化材料成为光催化领域研究焦点.2010年,叶金花课题组报道了Ag3PO4在可见光照射下可高效分解水产氧及降解水体中有机污染物,从而使其迅速成为研究热点.Ag3PO4是目前为止报道的光量子效率最高的可见光响应的催化材料,带隙能在2.3~2.5 eV范围内,其高效的光催化活性归结于其独特的电子结构利于光生电荷的分离及转移.然而,由于Ag3PO4本身易光蚀,稳定性差,必然限制其实际应用.近年来,为在进一步提升Ag3PO4活性的基础上增强稳定性,研究者通过多种方法对其进行修饰,包括贵金属沉积、碳材料修饰、负载及半导体异质复合等.相对于前面几种修饰方法,半导体复合相对高效且成本低.半导体复合主要构成II型异质结构和Z型光催化体系.II型异质结构由于内建电场的存在可以促进光生电荷的定向转移,从而提高光生电荷的分离效率,进而提高光催化活性.然而,这种电荷的定向迁移会降低光生电荷的氧化还原能力.模拟绿色植物的光合作用过程,一种全固态Z型光催化体系应运而生,其是将两种导带和价带位置匹配的可见光驱动的催化剂分别作为光催化系统I(PS I)和光催化系统II(PS II),同时选用导电性能优良的材料(Ag,Au和RGO等)作为电子介体.可见光照条件下,PS I和PS II均被激发产生电子和空穴,PS II导带上的电子通过电子介质与PS I价带空穴复合,一方面抑制了PS I和PS II本身电子和空穴的复合,另一方面保留了PS I导带电子的强还原性和PS II价带空穴的强氧化性.另外,PS I和PS II紧密结合形成具有准连续能级的固-固接触界面,PS II导带上的电子直接与PS I价带空穴复合,形成无电子介体的直接Z型光催化体系.Ag3PO4价带顶相对靠下,氧化能力强,往往作为PS II组分,其与导带顶相对靠上的催化剂(PS I)构成Z型体系,这样Ag3PO4导带电子可与PS I的价带空穴复合,减弱电子对Ag3PO4本身的还原,提高其稳定性;另一方面,Ag3PO4价带空穴可参与氧化反应.基于Ag3PO4的Z型体系主要以Ag作为电子介体,归因于在制备及光催化过程中原位产生的少量Ag可直接作为电子介体.此外,还原氧化石墨烯(RGO)也可作为电子介体,并且其存在可进一步提高Ag3PO4的稳定性.需要指出的是,基于Ag的等离子体共振效应,Ag3PO4基等离子体Z型光催化体系也受到关注.目前,Z型光催化体系处在发展阶段,必然存在一些问题,比如,II型异质光催化体系与直接Z型光催化体系如何区分,有待进一步研究.另外,报道的基于Ag3PO4的Z型体系主要用来光催化降解水体中的有机污染物,催化剂的回收再利用受到限制,今后可开发磁性Ag3PO4基Z型体系,解决回收再利用的问题;另外,通过能带调控,可将基于Ag3PO4的Z型体系多用于光催化产氢、还原CO2及处理有害气体.  相似文献   

15.
随着现代工业的迅猛发展,人类面临的能源危机和环境污染问题日益严重.光催化剂技术有望利用太阳能同时解决这两大问题,其关键在于设计高效的光催化体系.传统光催化材料TiO_2具有价廉、活性高及稳定性好等优点,然而其带隙宽(E_g=3.2 e V),仅能利用占太阳光谱约4%的紫外光,从而限制其利用太阳能.可见光占太阳光谱的40%以上,因此开发可见光响应的光催化材料成为光催化领域研究焦点.2010年,叶金花课题组报道了Ag_3PO_4在可见光照射下可高效分解水产氧及降解水体中有机污染物,从而使其迅速成为研究热点.Ag_3PO_4是目前为止报道的光量子效率最高的可见光响应的催化材料,带隙能在2.3~2.5 e V范围内,其高效的光催化活性归结于其独特的电子结构利于光生电荷的分离及转移.然而,由于Ag_3PO_4本身易光蚀,稳定性差,必然限制其实际应用.近年来,为在进一步提升Ag_3PO_4活性的基础上增强稳定性,研究者通过多种方法对其进行修饰,包括贵金属沉积、碳材料修饰、负载及半导体异质复合等.相对于前面几种修饰方法,半导体复合相对高效且成本低.半导体复合主要构成Ⅱ型异质结构和Z型光催化体系.Ⅱ型异质结构由于内建电场的存在可以促进光生电荷的定向转移,从而提高光生电荷的分离效率,进而提高光催化活性.然而,这种电荷的定向迁移会降低光生电荷的氧化还原能力.模拟绿色植物的光合作用过程,一种全固态Z型光催化体系应运而生,其是将两种导带和价带位置匹配的可见光驱动的催化剂分别作为光催化系统Ⅰ(PS Ⅰ)和光催化系统Ⅱ(PS Ⅱ),同时选用导电性能优良的材料(Ag,Au和RGO等)作为电子介体.可见光照条件下,PS Ⅰ和PS Ⅱ均被激发产生电子和空穴,PS Ⅱ导带上的电子通过电子介质与PS Ⅰ价带空穴复合,一方面抑制了PS Ⅰ和PS Ⅱ本身电子和空穴的复合,另一方面保留了PS Ⅰ导带电子的强还原性和PS Ⅱ价带空穴的强氧化性.另外,PS Ⅰ和PS Ⅱ紧密结合形成具有准连续能级的固-固接触界面,PS Ⅱ导带上的电子直接与PS Ⅰ价带空穴复合,形成无电子介体的直接Z型光催化体系.Ag_3PO_4价带顶相对靠下,氧化能力强,往往作为PS Ⅱ组分,其与导带顶相对靠上的催化剂(PS Ⅰ)构成Z型体系,这样Ag_3PO_4导带电子可与PS Ⅰ的价带空穴复合,减弱电子对Ag_3PO_4本身的还原,提高其稳定性;另一方面,Ag_3PO_4价带空穴可参与氧化反应.基于Ag_3PO_4的Z型体系主要以Ag作为电子介体,归因于在制备及光催化过程中原位产生的少量Ag可直接作为电子介体.此外,还原氧化石墨烯(RGO)也可作为电子介体,并且其存在可进一步提高Ag_3PO_4的稳定性.需要指出的是,基于Ag的等离子体共振效应,Ag_3PO_4基等离子体Z型光催化体系也受到关注.目前,Z型光催化体系处在发展阶段,必然存在一些问题,比如,Ⅱ型异质光催化体系与直接Z型光催化体系如何区分,有待进一步研究.另外,报道的基于Ag_3PO_4的Z型体系主要用来光催化降解水体中的有机污染物,催化剂的回收再利用受到限制,今后可开发磁性Ag_3PO_4基Z型体系,解决回收再利用的问题;另外,通过能带调控,可将基于Ag_3PO_4的Z型体系多用于光催化产氢、还原CO_2及处理有害气体.  相似文献   

16.
化石能源的使用可产生大量CO2,带来严重的温室效应。光催化CO2还原生产太阳燃料技术既有望缓解温室效应,又可以将低能量密度的太阳能转化为高能量密度的化学能储存起来方便使用。高效光催化材料的开发是发展光催化技术的关键。迄今,在已开发的所有半导体光催化材料中, TiO2仍是广泛研究的明星材料。在实际使用中, TiO2的光催化效率仍受限于其极弱的可见光利用率和较高的电子-空穴复合几率。近年来,越来越多的研究表明TiO2的结构与形貌特征极大地影响其光催化效率。尤其, TiO2的外露晶面设计与晶面效应研究引起了广泛关注。由于具有较高表面能和较多表面不饱和键,起初大多数理论和实验研究认为锐钛矿TiO2(001)晶面是光催化活性晶面。后来,越来越多研究表明并非锐钛矿TiO2(001)晶面的暴露比例越高其光催化活性就越高。最近,我们发现锐钛矿TiO2(001)晶面与(101)晶面在调控光催化CO2还原性能上具有良好的协同效应。密度泛函理论计算表明,锐钛矿TiO2的(001)晶面与(101)晶面的能带结构有差异,(001)晶面的导带位置相对于(101)晶面而言较高,而(101)晶面的价带位置相对于(001)晶面而言较低。基于此我们提出,具有合适比例的锐钛矿TiO2的(001)晶面与(101)晶面的交界处可以形成最佳的表面异质结或晶面异质结。表面异质结的形成导致光生电子倾向于向(101)扩散,光生空穴倾向于向(001)扩散,从而促进光生电子-空穴分离,降低光生电子-空穴复合几率。在此工作基础上,我们直接以氮化钛为原料,氢氟酸为添加剂,通过简单的水热反应一步合成了氮自掺杂的TiO2微米片。利用X射线粉末衍射、扫描电镜、X射线光电子能谱、紫外-可见漫反射光谱、氮气吸附-脱附以及电化学阻抗谱等方法手段对所制备的光催化剂进行了基本结构与理化性质表征分析,并研究了其可见光光催化CO2还原性能。电镜照片结果表明,我们所制备的氮自掺杂锐钛矿TiO2微米片的(001)晶面与(101)晶面比例分别为65%和35%。基于我们前期研究结果, TiO2微米片的(001)晶面与(101)晶面可以形成表面异质结,具有良好的电荷分离效率,这也得到了电化学阻抗谱研究结果的证明。同时,由于N的原位掺杂,所制备的TiO2微米片具有优异的可见光捕获能力。由于可见光利用效率增强与光生电子-空穴分离效率提高这两方面的综合作用,所制备的氮自掺杂TiO2微米片具有非常好的可见光光催化CO2还原制甲醇性能,比商用P25及氮掺杂TiO2纳米粒子等参考样品的可见光光催化性能更优异。研究表明,通过原位自掺杂方法与晶面设计方法相结合,可以同时改善TiO2的可见光利用效率和光生电子-空穴分离效率,优化TiO2的可见光光催化性能,这也为后续开发新型高效光催化材料提供了新思路。  相似文献   

17.
张玲  苏扬  王文中 《化学进展》2016,28(4):415-427
光生载流子的高效分离是提升光催化反应效率的重要步骤.近年来,内电场作为提高载流子分离效率的内在驱动力而成为光催化材料研究领域的热点之一.本文综述了国内外通过内电场调控光催化性能的研究动态和主要成果.内电场不仅是电子和空穴分离的内在驱动力,而且影响半导体材料费米能级的变化及载流子浓度分布,进而调控了光催化材料导带和价带的弯曲程度及载流子迁移路径.光催化材料内电场的产生机制主要有铁电材料极化、p-n异质结/多晶结、极化表面、晶面间及非线性光学材料内电场等方式,这些方式有效地提高了光生载流子的分离效率,降低电子和空穴复合的几率,从而进一步提高其光催化性能.最后,本文对构建内电场的未来发展趋势进行了展望,并强调了利用先进物理技术并结合理论计算方法来表征内电场的分布及作用的重要性.  相似文献   

18.
化石能源的使用可产生大量CO2,带来严重的温室效应.光催化CO2还原生产太阳燃料技术既有望缓解温室效应,又可以将低能量密度的太阳能转化为高能量密度的化学能储存起来方便使用.高效光催化材料的开发是发展光催化技术的关键.迄今,在已开发的所有半导体光催化材料中,Ti O2仍是广泛研究的明星材料.在实际使用中,Ti O2的光催化效率仍受限于其极弱的可见光利用率和较高的电子-空穴复合几率.近年来,越来越多的研究表明Ti O2的结构与形貌特征极大地影响其光催化效率.尤其,Ti O2的外露晶面设计与晶面效应研究引起了广泛关注.由于具有较高表面能和较多表面不饱和键,起初大多数理论和实验研究认为锐钛矿Ti O2(001)晶面是光催化活性晶面.后来,越来越多研究表明并非锐钛矿Ti O2(001)晶面的暴露比例越高其光催化活性就越高.最近,我们发现锐钛矿Ti O2(001)晶面与(101)晶面在调控光催化CO2还原性能上具有良好的协同效应.密度泛函理论计算表明,锐钛矿Ti O2的(001)晶面与(101)晶面的能带结构有差异,(001)晶面的导带位置相对于(101)晶面而言较高,而(101)晶面的价带位置相对于(001)晶面而言较低.基于此我们提出,具有合适比例的锐钛矿Ti O2的(001)晶面与(101)晶面的交界处可以形成最佳的表面异质结或晶面异质结.表面异质结的形成导致光生电子倾向于向(101)扩散,光生空穴倾向于向(001)扩散,从而促进光生电子-空穴分离,降低光生电子-空穴复合几率.在此工作基础上,我们直接以氮化钛为原料,氢氟酸为添加剂,通过简单的水热反应一步合成了氮自掺杂的Ti O2微米片.利用X射线粉末衍射、扫描电镜、X射线光电子能谱、紫外-可见漫反射光谱、氮气吸附-脱附以及电化学阻抗谱等方法手段对所制备的光催化剂进行了基本结构与理化性质表征分析,并研究了其可见光光催化CO2还原性能.电镜照片结果表明,我们所制备的氮自掺杂锐钛矿Ti O2微米片的(001)晶面与(101)晶面比例分别为65%和35%.基于我们前期研究结果,Ti O2微米片的(001)晶面与(101)晶面可以形成表面异质结,具有良好的电荷分离效率,这也得到了电化学阻抗谱研究结果的证明.同时,由于N的原位掺杂,所制备的Ti O2微米片具有优异的可见光捕获能力.由于可见光利用效率增强与光生电子-空穴分离效率提高这两方面的综合作用,所制备的氮自掺杂Ti O2微米片具有非常好的可见光光催化CO2还原制甲醇性能,比商用P25及氮掺杂Ti O2纳米粒子等参考样品的可见光光催化性能更优异.研究表明,通过原位自掺杂方法与晶面设计方法相结合,可以同时改善Ti O2的可见光利用效率和光生电子-空穴分离效率,优化Ti O2的可见光光催化性能,这也为后续开发新型高效光催化材料提供了新思路.  相似文献   

19.
石墨相氮化碳(g-C3N4)是一种新型的有机半导体材料,具有独特的层状结构、合适的能带位置、简单的制备方法以及出色的稳定性等特点,因而被广泛应用于光催化产氢领域.但是,较高的光生载流子的复合率和受限的迁移率大大地限制了g-C3N4的光催化产氢性能.目前,大量的研究证实块状g-C3N4的液相剥离、表面改性、元素掺杂、与其他半导体复合构筑异质结以及负载助催化剂等方法可以在一定程度上提高g-C3N4的光催化产氢性能.但是单一的g-C3N4改性方法往往并不能获得最理想的光催化产氢性能,因此,本文采用低温磷化法制备了二价钴(Co(II))修饰的磷(P)掺杂的g-C3N4纳米片(Co(II)/PCN),同时实现了掺杂P原子和负载空穴助催化剂Co(II),该催化剂表现出出色的光催化产氢性能.在光催化制氢过程中,铂(Pt)纳米颗粒作为电子助催化剂成功的负载在Co(II)/PCN上.光催化实验结果表明,最佳的Pt/Co(II)/PCN复合材料光催化产氢速率达到774μmol·g^?1·h^?1,比纯相的g-C3N4纳米片(89.2μmol·g^?1·h^?1)提升8.6倍.同时优化的光催化剂具有良好的光催化稳定性,并在402 nm处具有2.76%的量子产率.XRD,TEM,STEM-EDX和AFM结果证明,成功制备了纳米片状形貌的g-C3N4及其复合材料,催化剂中均匀的分布着Co和P元素.通过XPS证明了P-N的存在以及Co(II)的存在,并且Co(II)是以一种无定型的CoOOH的形式吸附在g-C3N4表面.光照后的TEM证明Pt颗粒成功的负载在Co(II)/PCN表面.UV-vis DRS表明,由于P的掺杂以及Co(II)的修饰,Co(II)/PCN相比于g-C3N4纳米片在可见光区域光吸收有了明显的增强.通过稳态和瞬态光致发光光谱分析,同时结合电化学分析表征(i-t、EIS)以及电子顺磁共振技术分析,证实了Co(II)/PCN高效光催化性能的原因可能是由于更高效的光生载流子分离效率.本文对Pt/Co(II)/PCN可能的光催化增强机理提出了设想.P的掺杂可以优化g-C3N4的电子结构,提高其光生载流子分离效率.而以Pt作为电子助催化剂,可以有效地捕获P掺杂的g-C3N4导带中的光生电子,进而发生水还原产氢反应;以Co(II)作为空穴助催化剂,可以捕获价带中的光生空穴,进而发生三乙醇胺氧化反应.通过采用不同功能的助催化剂,实现P掺杂g-C3N4光生电子空穴的定向分流,促进了P掺杂g-C3N4的光生载流子的分离,从而提高催化剂的光催化产氢性能.本文可以为设计具有空穴-电子双助催化剂的光催化产氢系统提供一个新的思路.  相似文献   

20.
本文利用亚硫酸盐与Bi2WO6协同作用,有效地提升其光催化活性。以甲基橙和抗生素环丙沙星(CIP)作为被降解物对该体系的光催化降解性能和机理进行了研究。结果表明:光催化活性增强主要原因为亚硫酸盐能与Bi2WO6的光生空穴及羟基自由基反应,不仅能生成新的活性物质亚硫酸自由基(SO3^2-),还能促进Bi2WO6光生电子—空穴对的分离。此外,还考察了催化剂的用量、和污染物的浓度对该体系光催化性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号