首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature dependent electron beam induced current (EBIC) technique has been applied to investigate the electrical activities of grain boundaries (GBs) in polycrystalline silicon. The GB character, misorientation and orientation of GB plane, were analyzed using a FE-SEM/EBSP/OIM system prior to the EBIC measurements. The EBIC contrasts were found to depend on GB character; low GBs showed weak contrasts compared with general GBs at any temperatures, and also demonstrated to vary at GB irregularities such as boundary steps. These results indicate that electrical properties depend on the orientation of the GB plane as well as the misorientation. On the other hand, there existed less differences in temperature dependence of EBIC contrast irrespective of GB characters. The EBIC contrast decreased with increasing temperature, showed a minimum around 250 K, then increased again with further increasing temperature. The resulting temperature dependence of EBIC contrast probably comes from the combination of two types of recombination processes of carriers. One is related to a shallow level associated with an inherent GB structure, though the exact energy levels also would probably depend on GB structures, and the other to a deep level associated with impurities segregated at GBs, which acts as recombination center.  相似文献   

2.
Using the method of layer-by-layer measurements of the electrical conductivity activation energy, an investigation is performed of grain-boundary diffusion of oxygen in polycrystalline Li–Ti-ferrites in the range of temperatures 873–1073 K. A correlation relation is established between the value of the intergranular potential barrier and the parameters of grain-boundary diffusion of oxygen in polycrystalline ferrites. An increase in this value gives rise to a growth in the diffusion activation energy. The grain-boundary diffusion coefficient increases with the value of the intergranular potential barrier.  相似文献   

3.
The theory of steady state motion of grain boundary sytems with triple junctions and the main features of such systems are considered. A special technique of in-situ observations and recording of triple junction motion is introduced, and the results of experimental measurements on Zn tricrystals are discussed. It is shown, in particular, that the described method makes it possible to measure the triple junction mobility. It was found that the measured shape of a moving half-loop with a triple junction agrees with theoretical predictions. A transition from triple junction kinetics to grain boundary kinetics was observed. This means that triple junctions can drag boundary motion. It is demonstrated that the microstructural (granular) evolution is slowed down by triple junction drag for any n-sided grain. The second consequence pertains to six-sided grains. For a boundary system with dragging triple junctions there is no unique dividing line between vanishing and growing grains with respect to their topological class anymore, like n = 6 in the Von Neumann-Mullins relation.  相似文献   

4.
An equation of grain boundary motion in a binary polycrystal is derived. The derivation is based on minimization of free energy of the total systems. The equation takes into account an impurity segregation at the grain boundary, grain boundary curvature and energy.As an example, we apply this equation to the analysis of the impurity drag effect problem. It is shown, that the sign of the impurity effect on grain boundary velocity (delay or acceleration) does not depend on kinetic coefficients. The sign of the effect is determined by a thermodynamic function which combines the grain boundary segregation coefficient, the derivative of grain boundary energy with respect to absorbed impurity concentration, and the derivative of bulk free energy with respect to bulk impurity concentration.  相似文献   

5.
We propose a new model for the effective thermal conductivities of nanottuids, which is derived from the fact that nanoparticles and clusters coexist in the fluids. The effects of the compactness and the perfectness of the contact between nanoparticles in clusters on the effective thermal conductivity of nanofluids are analysed. The proposed model indicates that the effective thermal conductivity of nanofluids decreases with the increasing concentration of clusters. The model predictions are compared with and are in good agreement with the available experimental data.  相似文献   

6.
The thermal expansion coefficient (TEC) of an ideal crystal is derived by using a method of Boltzmann statistics. The Morse potential energy function is adopted to show the dependence of the TEC on the temperature. By taking the effects of the surface relaxation and the surface energy into consideration, the dimensionless TEC of a nanofilm is derived. It is shown that with decreasing thickness, the TEC can increase or decrease, depending on the surface relaxation of the nanofilm.  相似文献   

7.
Grain boundary (GB) motion in high-purity Cu material (5N8 and 5N Cu) is investigated using the results of radiotracer GB diffusion measurements with tracers exhibiting fundamental differences in the solute-matrix atom interactions. The results on GB solute diffusion of Ag (revealing a miscibility gap in the Ag-Cu phase diagram) and Au (forming intermetallic compounds with Cu) in Cu and on Cu self-diffusion are analyzed.The initial parts of the Ag and Cu penetration profiles turned out to be substantially curved. The profile curvature is explained via the effect of GB motion during 110m Ag and 64Cu GB penetration. The activation enthalpies of GB motion in these two independent measurements occurred to be very close, 95 and 103 kJ/mol, respectively. Moreover, these values turn out to be close, but still somewhat larger than the activation enthalpy of Cu GB self-diffusion in Cu material of the same very high purity, Q Cu gb = 72 kJ/mol. Although tracer diffusion measurements of Au GB diffusion in Cu yielded only limited information on GB motion, the absolute values of GB velocities are consistent with those calculated from the Ag and Cu GB diffusion data.  相似文献   

8.
Grain growth in thin films is usually abnormal, leading not only to an increase in the average grain size, but also to an evolution in the shape of the grain size distribution and to an evolution in the distribution of grain orientations. The latter can be driven by surface, interface or strain energy minimization, depending on film and substrate properties and on deposition conditions, and can lead to different final textures depending on which energy dominates.In semiconductor films, as in other materials, grain growth stagnation coupled with texture-selective driving forces leads to secondary grain growth, the rate of which is higher in thinner films. Self ion-bombardment enhances the rate of pre-stagnation grain growth, and doping of Si with electron donor leads to enhanced pre-stagnation grain growth as well as surface-energy-driven secondary grain growth. The effects of ion-bombardment and dopants on grain growth in Si can be understood in terms of associated increases in point defect concentrations and the effects of point defects on grain boundary mobilities.  相似文献   

9.
Russian Physics Journal - Research was done on electrical conductivity and thermal conductivity of AgSbSe2 in the temperature range of 80–330 K. It was demonstrated that charge transfer in...  相似文献   

10.
In many experimental studies, curved penetration profiles are observed for grain boundary diffusion performed in the B kinetics regime in contrast to the shape expected from the solutions of the second Fick's equation. To explain these curvatures the effects of grain boundary structure, grain boundary migration, and grain boundary segregation have been successively proposed in the literature. Using previous data for Cu–Ag and Cu–Ni and new ones on Cu–Fe and Cu–Zn systems we will show how it is possible to separate all these possible contributions and how, knowing the true origin of the curvature, one can deduce much quantitative information impossible (or very difficult) to obtain by other techniques.  相似文献   

11.
The paper is devoted to the problem of the compensation effect for grain boundary (GB) diffusion, i.e. the linear dependence of the pre-exponential factor of the GB diffusion coefficient on the activation energy. Specific features of GB diffusion as a thermally activated process namely, the influence of segregation factor, K, and variation of the GB width, d, on the diffusion rate are discussed. A special diffusion experiment was designed to estimate the contribution of the separate component parts of the triple product, KdDGB (DGB is the GB diffusion coefficient). The experiment was performed with Al bicrystals. The variation of the GB width d, and a value of the segregation factor K, due to GB structure change are estimated. It is concluded that DGB is the main GB structure-sensitive parameter in the triple product. This circumstance allows us to consider the GBs in Al bicrystals as a series of uniform objects and to describe the kinetics of GB diffusion in terms of the compensation temperature Tc and a “barrier” phase. The value of Tc for GB diffusion of Zn and Ge in Al bicrystals is practically the same and equals 709 and 706 K, respectively. The character of the “barrier” phase is discussed.  相似文献   

12.
We provide an overview of the properties of triple junctions and quadruple points. It is shown that these junctions may exhibit distinct behaviors that imply that they have and thermodynamically distinct properties in the same way that grain boundaries can be considered as thermodynamically distinct phases, separate from the material that they inhabit. It is shown that the treatment of triple junctions as thermodynamically distinct defects is a natural extension of the treatment of grain boundaries, and that it can be further extended to other junctions such as quadruple nodes. Equilibrium dihedral angles under conditions of anisotropic interfacial energy are explored, and it is found that the dihedral angles may be variable under a range of different conditions.  相似文献   

13.
Current research on grain boundary migration in metals is reviewed. For individual grain boundaries the dependence of grain boundary migration on misorientation and impurity content are addressed. Impurity drag theory, extended to include the interaction of adsorbed impurities in the boundary, reasonably accounts quantitatively for the observed concentration dependence of grain boundary mobility. For the first time an experimental study of triple junction motion is presented. The kinetics are quantitatively discussed in terms of a triple junction mobility. Their impact on the kinetics of microstructure evolution during grain growth is outlined.  相似文献   

14.
According to the fact that many pulverized particles possess fractal characteristic, a fractal model for studying fine particles in granular material flows is first proposed. An expression of particles' fractal distribution is derived to describe the relationship between the particle fractal dimensions and particle velocity distribution function. In accordance with this model, the theoretical particle effective thermal conductivity is derived. The analytical results show that for the small Biot-Fourier number, the effective thermal conductivity increases with the square root of the granular temperature. For very large Biot-Fourier number, the effective thermal conductivity linearly increases with the granular temperature. Numerically calculated results show that the thermal conductivity increases with the particle size fractal dimensions and decreases with the particle surface fractal dimensions.  相似文献   

15.
The thermal conductivity (TC) of compression-moulded polypropylene (PP) and PP filled with 5–15% zinc oxide (ZnO) or calcium carbonate (CaCO3) nanoparticles, prepared by extrusion, was studied using a thermal conductivity analyzer (TCA). The effect of nanoparticle content and crystallinity on the thermal conductivity was investigated using conventional methods, including SEM, XRD, and DSC. The incorporation of nanoparticles improved the crystallinity and thermal conductivity simultaneously. The experimental TC values of the PP nanocomposites with different level of nanoparticles concentration showed a linear increase with an increase in crystallinity. The TC improvement in PP/ZnO nanocomposite was greater than that of PP/calcium carbonate nanocomposites. This fact can be attributed to the intrinsic, better thermal conductivity of the ZnO nanoparticles. Several models were used for prediction of the TC in the nanocomposites. In the PP/ZnO nanocomposites the TC values correlated well with the values predicted by the Series, Maxwell, Lewis and Nielson, Bruggeman, and De Loor models up to 10 wt%.  相似文献   

16.
As VLSI conductor line dimensions continue to decrease, electrotransport properties increasingly effect device lifetimes. Grain boundaries are intimately linked to these processes, providing paths of varying diffusivity, and as mobile defects themselves. Haessner et al. [6] make a challenging finding in experiments with thin gold films: based on calorimetric data, in order to account for the velocity of grain boundaries migrating in high electric current densities, the force on the atoms of a grain boundary would have to be two orders of magnitude larger than what the accepted theory for bulk ions predicts. The failure is attributed to the simplicity of the model which does not account for possible variations of the resistivity and effective valance charge that could occur in the vicinity of a grain boundary. In this paper, expressions are developed for the electron wind force on the atoms near grain boundaries, and they are written in terms of thermodynamic variables: the boundary specific volume expansion and specific resistivity. The enhancement of the wind force of the boundary atoms over the bulk wind force is calculated using published data. This model allows for more than an order of magnitude enhancement in gold, and Haessner's observation is rationalized.  相似文献   

17.
By solving the Boltzmann transport equation and considering the spin-dependent grain boundary scattering, the distribution of electrons in grains and the electrical transport properties in the applied magnetic field are studied. With regard to the dominant influence of grain boundary scattering which is taken as a boundary condition for the electrical transport, the grain size-dependent electrical conductivity is investigated. In addition, the reorientation of the relative magnetization between grains brings the change of the electron spin when the magnetonanocrystailine material is subjected to the magnetic field, resulting in the remarkable giant magnetoresistance effect.  相似文献   

18.
As a straightforward generalization of the well-known Voronoi construction, Laguerre tessellations have long found application in the modelling, analysis and simulation of polycrystalline microstructures. The application of Laguerre tessellations to real (as opposed to computed) microstructures—such as those obtained by modern 3D characterization techniques like X-ray microtomography or focused-ion-beam serial sectioning—is hindered by the mathematical difficulty of determining the correct seed location and weighting factor for each of the grains in the measured volume. In this paper, we propose an alternative to the Laguerre approach, representing grain ensembles with convex cells parametrized by orthogonal regression with respect to 3D image data. Applying our algorithm to artificial microstructures and to microtomographic data sets of an Al-5 wt% Cu alloy, we demonstrate that the new approach represents statistical features of the underlying data—like distributions of grain sizes and coordination numbers—as well as or better than a recently introduced approximation method based on the Laguerre tessellation; furthermore, our method reproduces the local arrangement of grains (i.e., grain shapes and connectivities) much more accurately. The additional computational cost associated with orthogonal regression is marginal.  相似文献   

19.
采用原子格林函数(AGF)方法研究了界面尺寸对铜/单层石墨烯(SLG)界面热导的影响.建立了有限和无限界面尺寸的AGF计算模型,计算得到的界面热导均在铜的迪拜温度(343 K)附近收敛,但两者计算得到的透射系数和界面热导存在明显差别:有限界面尺寸时计算得到的透射系数在1.5 THz附近达到峰值0.84,而无限界面尺寸时...  相似文献   

20.
The microscopic properties a ZnO grain boundary containing extrinsic point defects are studied using a density functional computational approach. The results show that the grain boundary acts as a sink for native defects, such as the zinc vacancy and the oxygen interstitial, and also for bismuth substitutional impurities. The defects tend to accumulate at under-coordinated sites in the boundary core and prefer to form small clusters. In particular the segregation of Bi promotes the formation of the other native defects by lowering their formation energies in the boundary. Individually, the native defects and the Bi impurity do not produce deep interface states in the band gap which are electrically active. However, when the defects cluster to form a BiZn-VZn-Oi complex, new gap states are created of acceptor type. It is suggested that these new states are caused by defect interactions which compensate one another resulting in the depletion of an occupied impurity state and new bond formation. The results are discussed in terms of the Schottky barrier model commonly used to describe the electrical characteristics of ZnO varistors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号