首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
过渡金属氮掺杂碳基催化剂已成为替代铂基氧还原反应(ORR)电催化剂的理想选择。本文通过静电纺丝技术制备了高比表面、高度分散的钴原子配位氮掺杂的碳纳米纤维催化剂(Co-N/C)。X射线衍射(XRD)和高分辨率透射电镜(HRTEM)结果证实Co元素高度分散于制备的Co-N/C催化剂中。X射线光电子能谱结果表明N元素主要以吡啶N和石墨N形式存在。该Co-N/C催化剂对ORR反应呈现出较高的电催化活性,其氧还原起始和半波电位分别为0.92 V和0.80 V(相对于标准氢电极),接近于商业化Pt/C催化剂的性能。以制备的Co-N/C催化剂作为阴极,25℃下锌空气燃料电池的开路电位1.54 V、最大功率密度达到了190 m V·cm~(-2)表明该催化剂具有良好的应用前景。  相似文献   

2.
氮掺杂碳通常被用作铂基催化剂电催化氧还原反应的功能载体,但是,掺杂的氮对分子氧在铂活性中心上的吸附和还原机理尚不清楚。本研究采用氨气热解的方法制取氮掺杂纳米碳作为载体,并采用调节氨气热解温度进而控制不同种类氮掺杂的含量,可以使铂催化剂获得较高的零价铂含量、较大的电化学活性面积、合适的铂粒径(2.10 nm)和电子快速传输能力从而提高电催化活性。研究发现,具有最佳氮含量掺杂的Pt/Nano-NC-800催化剂显示出优异的电催化氧还原性能(例如,半波电位为0.80 V vs RHE,极限扩散电流为5.37 mA/cm2),以及强的抗甲醇和一氧化碳中毒能力。该性能优于商业铂碳催化剂(20%,JM)以及大多数沉积在碳纳米颗粒或其他载体上的铂催化剂,表现出优异的应用潜力。  相似文献   

3.
《电化学》2017,(2)
氮掺杂的多孔碳材料有望能取代当前普遍应用于质子交换膜燃料电池和金属-空气电池阴极中的贵金属氧还原催化剂,因而备受关注.模板辅助合成技术作为一种可靠、通用的方法已经在多孔碳电催化剂的制备中得到了广泛的应用.在碳基ORR电催化剂中,其ORR活性受到诸多因素的影响,如掺杂剂的浓度及其在碳上的分子掺杂态、孔洞结构、比表面积以及碳基材料的导电性等.本文对近期氮掺杂多孔碳电催化剂的设计、制备、功能化及其在氧还原电催化中的应用研究进展进行了总结,同时展望了模板辅助合成法的一些发展趋势.  相似文献   

4.
氮掺杂的多孔碳材料有望能取代当前普遍应用于质子交换膜燃料电池和金属-空气电池阴极中的贵金属氧还原催化剂,因而备受关注. 模板辅助合成技术作为一种可靠、通用的方法已经在多孔碳电催化剂的制备中得到了广泛的应用. 在碳基ORR电催化剂中,其ORR活性受到诸多因素的影响,如掺杂剂的浓度及其在碳上的分子掺杂态、孔洞结构、比表面积以及碳基材料的导电性等. 本文对近期氮掺杂多孔碳电催化剂的设计、制备、功能化及其在氧还原电催化中的应用研究进展进行了总结,同时展望了模板辅助合成法的一些发展趋势.  相似文献   

5.
鄢维  李渊 《分子催化》2023,37(2):187-201
尿素是一种重要的化工原料并作为氮源广泛应用于化肥生产。工业合成尿素由氮气加氢合成氨气以及氨气和二氧化碳转化为尿素两步实现,存在高能耗和高污染等问题。通过电催化碳氮偶联,将二氧化碳和氮源(氮气、硝酸根、亚硝酸根、一氧化氮等)转化为尿素,可直接跳过合成氨反应并在温和的反应条件下同时实现人工固氮和固碳。因此,尿素电合成技术不仅避免了高能耗和高污染,还能够实现惰性气体分子的高效利用,对于加快实现“碳达峰碳中和”战略有着重要的意义。本文聚焦尿素电合成这一前沿研究热点,结合领域内最新研究进展,首先介绍了不同电催化剂的设计策略及其催化机制,随后总结了电催化碳氮偶联合成尿素的反应机理,并对尿素电合成的后续研究方向进行了展望。  相似文献   

6.
低碳烯烃是化学工业的重要原料,通过脱氢反应将低碳烷烃转化为同碳数的烯烃是烷烃高值化利用和烯烃原料多元化的重要途径.烷烃氧化脱氢制烯烃的反应具有不受反应平衡限制、无积炭、反应温度低等优点,一直是研究的热点.传统的金属氧化物具有较好的催化剂活性,但容易造成烯烃的过度氧化而导致烯烃选择性低.硼基催化剂作为一种新型非金属催化剂,表现出显著不同于金属氧化物催化剂的反应特性.六方氮化硼(hBN)被首次报道在丙烷氧化脱氢反应展现高活性,随后系列硼化物(SiB_6、CB_4等)以及负载型硼基催化剂相续被报道.硼催化剂显现出高的催化活性和优异的烯烃选择性,产物中几乎没有完全氧化产物CO2生成,这为选择性断裂C-H键开辟了新路径.大量的谱学以及动力学研究表明催化剂表面BOx物种为催化剂的活性位点.这种打破传统认知的非金属催化剂的催化作用在国际上已经形成一个新的研究热点.此外,非金属炭基催化剂在烷烃氧化脱氢反应中也表现出一定的活性,碳纳米管、碳纳米纤维以及纳米金刚石等炭基催化剂均被用于氧化脱氢反应.炭基催化剂中的羰/醌基被认为是催化活性位;催化剂表面的羧酸、酸酐、内酯等官能团易引起选择性的下降,通过杂原子(B、P、N)掺杂可调变催化剂表面的亲电氧物种,改善烯烃的选择性.本文主要综述了近年来非金属催化低碳烷烃氧化脱氢所涉及的催化剂体系、反应机理等研究进展,最后展望了不同催化剂体系应用于烷烃氧化脱氢反应的未来发展.  相似文献   

7.
黄斌  吴亦凡  陈碧波  钱勇  周耐根  李能 《催化学报》2021,42(7):1160-1167,中插38-中插41
由于氨是药物、肥料和树脂等领域的基础,氨合成一直广受关注.工业中主要通过Haber-Bosch反应制备氨,反应需要在高温高压下进行.因此,探索其它氨合成技术对减轻能源消耗和缓解温室效应具有重大意义.在溶液条件下,采用水作为氢质子源,电化学还原氮合成氨方法受到了极大关注.然而,大多数电催化剂难以活化氮气分子且电催化氮气还原过程中存在副反应竞争,因此,研发高效的电催化材料仍然是一个重要研究领域.研究人员探索了多种电催化材料,其中,双原子对催化剂成为电催化领域的研究热点.与单原子催化剂相比,双原子对催化剂不仅具有低配位的金属原子,而且可以通过调节额外分散的金属原子来改善多数电催化反应性能.作为一种新型碳氮材料,二维g-CN具有高表面积、多孔结构以及出色的光学活性和热力学稳定性,可以与金属原子对良好地适配,是一种有潜力的基底材料.然而,目前有关金属双原子对负载在g-CN单层上作为电催化剂催化N2分子还原性能尚不清楚.本文采用密度泛函理论计算研究了N2分子在过渡金属原子对(TM=Sc~Zn)掺杂g-CN单层上的吸附和活化,根据吉布斯自由能详细地研究了电催化合成氨的电化学机理.计算发现,在Fe2@CN和Co2@CN催化剂上,其决速步骤的自由能变化分别为0.47和0.78 eV.对于Fe2@CN,N2电还原反应机制遵循末端路径,而在Co2@CN上,其还原过程为末端或混合路径.由于Co2@CN对析氢反应的抑制效果较好,因此该电催化材料体系极具竞争力.相比于Co2@CN,Fe2@CN具有较好的氮气活化性能,但选择性较差.另外,N2分子与Fe2@CN和Co2@CN之间存在电荷的接受-给予过程,这在活化惰性N2分子中氮原子间的三键上起到了关键作用.第一性原理分子动力学模拟结果表明,Fe2@CN和Co2@CN表现出较高的结构稳定性.因此,本文深入探讨了过渡金属原子对掺杂g-CN单层催化剂上的氮气还原效率及机制,为合理设计该系列的高效、低成本电催化剂提供理论依据.  相似文献   

8.
氨在化肥、染料、药品和炸药的制造中起着重要作用.目前,传统的Haber-Bosch工艺主要用于NH3的大规模工业化生产,在苛刻的反应条件(300~500℃,150~300 atm)下不可避免地伴随着温室气体的过量排放.因此,必须寻求一种绿色并且可持续的方法来生产NH3.电化学还原N2 (NRR)已成为在环境条件下将N2连续固定NH3的一种有吸引力的替代方法.由于稳定的N-N具有较强的偶极矩并与析氢反应存在激烈竞争,因此需要高效的NRR催化剂.TiO2是典型的n型半导体,被认为是一种很有前途的NRR电催化剂.最近的研究表明,La2O3对N2还原电催化也具有活性,然而镧金属的稀土性质限制了其大规模应用.本文研究发现镧可以作为一种有效的掺杂剂提高TiO2的NRR活性.通过水热法制备了镧掺杂的TiO2纳米棒(La-TiO2).透射电子显微镜结果表明,原始TiO2与La-TiO2在形貌上都是纳米棒,镧的引入对其形貌并没有显著影响.选区电子衍射证实了La-TiO2纳米棒的高结晶度和四边形单晶结构.电子自旋共振分析结果表明La-TiO2纳米棒中存在氧空位.La-TiO2的线性扫描伏安曲线结果表明,在N2饱和电解液中的电流密度明显大于在Ar饱和电解液中,说明NRR的发生.为了进一步证实这一假设,在五个不同电位下分别进行了一系列的计时电流测试,结果表明,连续电解2h后在-0.70 V时,NH3产率最高,达23.06 μg h-1 mgcat-1,并且法拉第效率也最大,达14.54%.此外,电解2h后,没有检测到副产物N2H4,表明La-TiO2催化剂对NH3合成具有良好的选择性.本文还比较了La-TiO2/CP,TiO2/CP和CP的NRR电催化性能,结果表明,La-TiO2/CP的NH3产率最高,说明La的引入提高了La-TiO2的NRR活性.La-TiO2/CP通过在-0.70 V下连续6次循环测试以及连续48 h电解测试证实La-TiO2对NRR电催化具有良好的电化学稳定性.通过对La-Ov构型进行密度泛函理论计算,重点研究*N2+H++e-→*NNH的反应步骤,由于*N2加氢的自由能垒较低,La-TiO2更容易激活N2分子,计算了La-TiO2和纯TiO2上*NNH中间体的电荷密度差异,*NNH与La-TiO2之间存在更多的电荷转移.采用N-N键的积分晶体轨道哈密顿布居(ICOHP)分析出La-TiO2的ICOHP负值较小(-16.67 vs.-19.93),说明N-N键的活化更多.  相似文献   

9.
碳基非金属氧还原(ORR)电催化剂的研究近年来发展迅速,通过掺入杂原子等方法虽获得了一定的ORR活性,但仍需进一步提高。以此类电催化剂为基体,引入更多的活性位点,有可能获得更好的ORR活性。本文首先以带负电荷的SiO_2纳米球通过静电作用吸附带正电荷的质子化苯胺分子,再通过聚合反应实现聚苯胺(PANI)对SiO_2纳米球的包覆,之后将四甲氧基苯基铁卟啉(FeP)沉积在PANI表面,经高温热解,并去除SiO_2模板,得到了一种新型的多孔ORR电催化剂。在0.1 mol·L~(-1) KOH水溶液中,电催化剂的ORR半波电位达0.843 V (vs.可逆氢电极(RHE)),优于文献报道的大部分碳基非金属ORR电催化剂,与商业Pt/C相近。显著提高的ORR活性可能源于孔结构(平均孔径18 nm,孔容1.1 cm~3·g~(-1))、高比表面积(687.5 m~2·g~(-1))和高氮含量(6.4%)。在加速耐久性测试中,电催化剂的ORR半波电位衰减25 mV,与其它碳基非金属ORR电催化剂相当,且远优于商业Pt/C (衰减74 mV)。另外,电催化剂应用于氢氧根交换膜燃料电池(HEMFC)时的单池峰值功率密度达42 mW·cm~(-2)。  相似文献   

10.
NH_3作为一种必需的活化氮源,在化肥、染料、爆炸物和药物等的制造中起到了关键作用;同时,它也是一种在交通运输领域具有吸引力的无碳能源载体.工业上生产氨气使用典型的哈伯-博世工艺,但是此工艺涉及大量的能源消耗和碳排放,给环境带来巨大的压力.电化学氮还原反应(NRR)能够在温和环境下实现环境友好、节能的氨合成,但此过程需要高效的电催化剂.高效的NRR催化剂(Au、Ag、Pd和Ru)储量少、成本高,阻碍了它的实际应用.因此,设计和开发由地球上丰富的元素制成的具有成本效益的催化剂来代替NRR催化剂意义重大.本课题组最近的研究(Chem.Commun.,2018,54,12966–12969)表明,SnO_2在环境条件下具有电催化氧化活性,但其低电导率限制了其性能,可通过氟掺杂或石墨烯杂化予以解决.氧化铟锡(ITO)作为一种含SnO_2的材料,导电性好,可望用于NRR的高效电催化剂中.因此,本文采用商用氧化铟锡玻璃(ITO/G)作为催化剂电极,在温和环境条件下进行N_2-NH_3的电化学转化,并呈现出对生成氨气有较高的选择性.XRD和XPS结果表示,商用ITO/G中存在In,Sn和O元素;SEM显示ITO/G具有清晰的纳米薄膜结构和267 nm的截面厚度;相应的EDX谱图显示In,Sn和O元素分布均匀,且原子比为32.11:3.16:64.74.采用紫外-可见光谱及线性扫描伏安和恒电位极化等电化学测试研究了商用ITO/G的NRR活性.在0.5 M Li Cl O_4电解液中测试时,于–0.40 V vs.RHE条件下,ITO/G的NH_3产率为1.06?10~(–10) mol s~(–1) cm~(–2),其法拉第效率为6.17%.~(15)N同位素标记实验证实了所测到的NH_3是由ITO/G催化的N_2电还原反应生成的.利用第一性原理计算探讨了在ITO催化剂上可能的NRR反应机理,确定了ITO催化剂的NRR活性位点、N_2化学吸附活性位点以及NRR的反应途径.此外,24 h恒电位(–0.40 V vs.RHE)极化测试和2 h恒电位极化(–0.40 V vs.RHE)测试后的XRD和SEM结果表明,该催化剂具有较高的电化学稳定性.综上所述,商用ITO/G用作在环境条件下将N_2转化为NH_3的有效催化剂电极,将为开发人工固定氮气的ITO基纳米结构提供一种研究途径.  相似文献   

11.
孟鹏飞  张笑容  廖世军  邓怡杰 《化学进展》2022,34(10):2190-2201
原子级别分散的过渡金属和氮共掺杂碳基催化剂(M-Nx-C)具有反应活性好、选择性高、制备容易等优点,被认为是最有可能取代价格昂贵的铂催化剂用作燃料电池阴极的一类非贵金属催化剂。然而,该类催化剂在阴极侧氧还原反应过程中存在活性位点密度较低、耐久性不足的问题制约了其在燃料电池中的实际应用。研究表明,通过多种金属/非金属元素的掺杂调控活性位点的电子结构与空间构型可显著提升M-Nx-C催化剂的氧还原活性和稳定性,已成为掺杂碳基催化剂领域的热门研究课题。本文综述了近年来国内外在多种金属/非金属元素掺杂提升M-Nx-C碳基催化剂性能方面的主要研究工作,包括金属元素掺杂、非金属元素掺杂等研究。文章进一步总结和指出了M-Nx-C碳基催化剂面临的问题及挑战,并对其发展前景和未来研究方向进行了展望。  相似文献   

12.
王婷  李绍雄  赫丙玲  朱晓娟  罗永岚  刘倩  李廷帅  卢思宇  叶晨  Abdullah M.Asiri  孙旭平 《催化学报》2021,42(6):1024-1029,中插46-中插52
NH3作为一种必需的活化氮源,在化肥、染料、爆炸物和药物等的制造中起到了关键作用;同时,它也是一种在交通运输领域具有吸引力的无碳能源载体.工业上生产氨气使用典型的哈伯-博世工艺,但是此工艺涉及大量的能源消耗和碳排放,给环境带来巨大的压力.电化学氮还原反应(NRR)能够在温和环境下实现环境友好、节能的氨合成,但此过程需要高效的电催化剂.高效的NRR催化剂(Au、Ag、Pd和Ru)储量少、成本高,阻碍了它的实际应用.因此,设计和开发由地球上丰富的元素制成的具有成本效益的催化剂来代替NRR催化剂意义重大.本课题组最近的研究(Chem.Commun.,2018,54,12966-12969)表明,SnO2在环境条件下具有电催化氧化活性,但其低电导率限制了其性能,可通过氟掺杂或石墨烯杂化予以解决.氧化铟锡(ITO)作为一种含SnO2的材料,导电性好,可望用于NRR的高效电催化剂中.因此,本文采用商用氧化铟锡玻璃(ITO/G)作为催化剂电极,在温和环境条件下进行N2-NH3的电化学转化,并呈现出对生成氨气有较高的选择性.XRD和XPS结果表示,商用ITO/G中存在In,Sn和O元素;SEM显示ITO/G具有清晰的纳米薄膜结构和267 nm的截面厚度;相应的EDX谱图显示In,Sn和O元素分布均匀,且原子比为32.11:3.16:64.74.采用紫外-可见光谱及线性扫描伏安和恒电位极化等电化学测试研究了商用ITO/G的NRR活性.在0.5 M LiClO4电解液中测试时,于-0.40 V vs.RHE条件下,ITO/G的NH3产率为1.06×10-10 mol s-1 cm-2,其法拉第效率为6.17%.15N同位素标记实验证实了所测到的NH3是由ITO/G催化的N2电还原反应生成的.利用第一性原理计算探讨了在ITO催化剂上可能的NRR反应机理,确定了ITO催化剂的NRR活性位点、N2化学吸附活性位点以及NRR的反应途径.此外,24 h恒电位(-0.40 V vs.RHE)极化测试和2 h恒电位极化(-0.40 V vs.RHE)测试后的XRD和SEM结果表明,该催化剂具有较高的电化学稳定性.综上所述,商用ITO/G用作在环境条件下将N2转化为NH3的有效催化剂电极,将为开发人工固定氮气的ITO基纳米结构提供一种研究途径.  相似文献   

13.
铂基催化剂是目前氢氧燃料电池中实际应用的阴极氧还原催化剂,由于铂昂贵的价格以及稀缺性,开发非贵金属氧还原催化剂对于氢氧燃料电池的规模化应用非常必要.碳基非贵金属氧还原催化剂,包括金属-氮掺杂碳(M–N–C)材料和非金属杂原子掺杂碳材料,是目前最重要也是研究最广泛的两类非贵金属氧还原催化剂.对其活性位点的认知是研究热点之一,也是明显提高性能和宏量制备的关键所在.对于金属-氮掺杂碳催化剂,目前受到广泛认可的活性位点包括:M–N_x/C(x=1,2,3,4)、Nx–C、包覆的纳米金属粒子活化的碳层等.对于非金属杂原子掺杂碳材料(如氮掺杂碳材料),氮原子毗邻的碳原子一般被认为是活性位点.但由于原料本身、制备过程等因素,可能引入痕量的金属元素,严格意义上的非金属杂原子掺杂碳材料难以制备,使得明确其活性位点非常困难.结合本研究组在该领域的工作,本文介绍了当前上述两类催化剂在研究方面的进展,总结分析了几种对活性位点探索和确认的主流认识,以期有助于碳基非贵金属氧还原催化剂的进一步研究.  相似文献   

14.
电化学固氮技术由于可在温和条件下进行,为肥料低成本生产提供了新策略,但高稳定性和高活性电催化剂的选择是其关键技术。 本文采用溶胶凝胶法合成了钒掺杂ZIF-8,以此为前驱体进一步高温碳化,合成了纳米介孔钒-氮共掺杂碳基电化学还原氮(NRR)催化剂。 利用透射电子显微镜、X射线衍射、X光电子能谱和Raman光谱等对催化剂进行了表征分析。 所得催化剂呈现出高度无序的三维多孔碳结构。 催化剂中存在适量的V5+、碳化氮和吡啶氮对NRR起到明显促进作用。 当前驱体中钒锌比为0.125,在N2气气氛保护下1100 ℃热处理获得催化剂具有最佳NRR性能,在0.1 mol/L KOH电解质溶液中,当外加电压为-0.4 V时,氨的生产速率可达7.092 μmol/(cm2·h),法拉第效率为23.88%,且催化剂具有良好的稳定性。  相似文献   

15.
碳基非金属催化剂是指包括碳纳米管(CNTs)、氧化石墨烯(GO)、石墨烯(G)、活性炭(AC)及其掺杂或修饰后得到的材料作为用于涉及能量转换等关键反应过程的催化剂.碳基非金属催化剂由于具有来源丰富、成本低、对环境友好、后处理简单、可持续发展等优点,近年来被成功应用于有机合成领域.基于碳基非金属催化剂应用于氧化反应、还原反应、取代反应和偶联反应被成功报道,但针对碳基非金属催化剂应用于有机合成领域进行催化的活性位点的研究目前仍处于早期发展阶段.近年来,科学家们针对其机理的研究主要集中于对催化剂的表征分析和第一性原理计算,但未得出相对一致的实验结论.对碳基非金属催化剂在有机合成领域的应用及机理研究进行了综述.  相似文献   

16.
氨(NH3)广泛应用于化肥等工业化学品的生产中,年消耗量巨大.同时,氨具有高氢含量和高能量密度,可作为清洁能源载体和燃料,具有广阔的应用前景.因此,合成氨工业在国民经济和社会发展中起着重要作用.目前,合成氨的主要采用传统的Haber-Bosch工艺,但其严苛的操作条件导致了大量能源消耗和二氧化碳排放,进一步加剧了全球变暖.在全球能源危机和环境问题的背景下,开发可再生能源驱动的绿色高效氨合成技术受到广泛关注.其中,以光催化和电催化为动力的氮还原反应(NRR)被认为是最有前途的方法之一.然而,由于N2吸附动力学缓慢, N≡N键分裂困难且析氢反应严重,目前电催化和光催化氮还原的产率和法拉第效率都较低.近年来,得益于各种催化剂和电解液的发展, NRR产率和法拉第效率不断提升,但也逐渐暴露出一些严重的问题——测试结果呈现高波动性和低重复性,甚至假阳性,这使得人们对NRR的发展前景产生了怀疑.由于NRR反应的产量极低(通常为纳/微摩尔水平),所以反应过程中的微量污染都可能严重影响NH3的定量结果,从而导致对NRR反应体系性能的误判.因此,如何保证得到的产物NH3完全来自于氮气的还原是一个难题.本文...  相似文献   

17.
采用熔盐辅助微波法制备了可见光下具有优越光催化固氮性能的镍掺杂石墨相氮化碳.采用X射线衍射(XRD)、扫描电镜(SEM)、氮气吸附-脱附、紫外-可见光谱(UV-Vis)、X射线光电子能谱(XPS)、荧光光谱(PL)、程序升温脱附(TPD)和电化学阻抗谱(EIS)等手段对催化剂进行了表征.结果表明,熔盐辅助微波法使氮化碳催化剂从层状结构变为纳米颗粒状,并相互紧密堆积形成很多二次孔,增大了催化剂的比表面积.同时,在催化剂制备过程中,熔盐包裹住了催化剂原料,避免了镍离子与氧气的接触,使镍离子呈现出活性的Ni(Ⅰ)—N态和非活性的氧化镍态2种存在形式.Ni(Ⅰ)—N作为反应活性中心,能有效捕获光电子,提高电子-空穴分离效率,促进电子从掺杂镍离子向N2分子的迅速转移,实现氮气分子的活化,进而提高固氮性能.  相似文献   

18.
杨立军  赵宇  陈盛  吴强  王喜章  胡征 《催化学报》2013,34(11):1986-1991
以替代铂为目标的高性能廉价氧还原电催化剂的研究为当今科学前沿. 近年来人们发现, 掺杂的碳基纳米结构具有催化活性高、稳定性好、资源丰富、抗CO和抗甲醇能力强等优点, 是一种新型无金属氧还原电催化剂, 具有替代铂基催化剂的潜力. 本文结合作者课题组的最新研究成果, 简要综述了碳基无金属氧还原电催化剂研究的主要进展, 重点关注了富电子氮和缺电子硼单/共掺杂的碳纳米结构的氧还原催化性能及其与电子结构的关系, 展望了碳基无金属氧还原催化剂的发展策略与前景.  相似文献   

19.
石墨烯基催化剂的设计合成与电催化应用   总被引:2,自引:1,他引:1  
为了解决能源匮乏和环境污染的问题,研究人员正致力于寻找清洁可持续的新能源。 其中,氧气还原、氧气析出、析氢反应等是紧密联系新型清洁能源获取和存贮的重要电化学反应。 为了提高其能量转化效率,电催化剂(如碳载铂Pt/C)被广泛地用于降低其反应活化能、提高能量转化效率。 近年来,石墨烯作为一种具有高比表面积和优异导电性的二维碳材料受到了广泛关注。 通过表面杂原子掺杂、缺陷调控和引入催化活性组分等方式,获得了催化性能与贵金属催化剂相媲美,且低价格和高稳定性的非贵金属石墨烯基催化材料。 针对氧气还原、氧气析出和析氢反应在燃料电池、金属-空气电池和电催化水分解中的应用,本文概括综述了通过表/界面结构性质调控提高石墨烯电催化性能和稳定性,获得具有双功能或复合催化性能的石墨烯基催化剂的最新研究进展。 最后总结和展望了亟待解决的问题及未来的发展趋势。  相似文献   

20.
由于石墨相氮化碳(g-C3N4)的独特结构和性质,特别是其具有合适的能带结构位置及可调控的晶体结构,被广泛应用于光催化产氢反应中.然而,纯相氮化碳具有较快的光生电荷复合速率,这使其光催化产氢活性较低.目前,利用非金属或过渡金属原子掺杂可有效提升电荷分离速度,从而提高光催化产氢活性.相比于非金属掺杂,g-C3N4的三嗪环...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号