首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
We investigate strong exciton-plasmon coupling and plasmon-mediated hybridization between the Frenkel(F)and Wannier-Mott(WM)excitons of an organic-inorganic hybrid system consisting of a silver ring separated from a monolayer WS_2 by J-aggregates.The extinction spectra of the hybrid system calculated by employing the coupled oscillator model are consistent with the results simulated by the finite-difference time-domain method.The calculation results show that strong couplings among F excitons,WM excitons,and localized surface plasmon resonances(LSPRs) lead to the appearance of three plexciton branches in the extinction spectra.The weighting efficiencies of the F exciton,WM exciton and LSPR modes in three plexciton branches are used to analyze the exciton-polaritons in the system.Furthermore,the strong coupling between two different excitons and LSPRs is manipulated by tuning F or WM exciton resonances.  相似文献   

3.
We report the results of our theoretical studies of the optical properties of hybrid nanoparticles consisting of the metal core covered with molecular J-aggregates. We evaluate the cross sections of absorption and scattering of light by such particles on the basis of the extended Mie theory for two concentric spheres with material dielectric functions that take into account the size effect associated with scattering of free electrons from the core/shell interface. We carry out our calculations in a wide range of light wavelengths and geometrical parameters of the composite system for silver and gold core and for a J-aggregate shell composed of different cyanine dyes. The results obtained demonstrate the quite different behavior of the extinction spectra of such particles caused by the different strengths of interaction between the Frenkel exciton and the dipolar or multipolar plasmons. We pay particular attention to the investigation of spectral peak positions associated with the eigenfrequencies of hybrid modes in the system and peak intensities as functions of reduced oscillator strength in the molecular J-band for various relationships between the core radius and shell thickness. This provides an efficient means for the explanation of the main features in the optical properties of metal/J-aggregate nanoparticles and can be used for an effective control of the plasmon–exciton coupling strength in such hybrid complexes.  相似文献   

4.
The optical properties of microcavities (MCs) are strongly dependent on both polarization of incident and emitted light and its angle of observation. Here we report the measurements of cw- and time-resolved photoluminescence (PL) observed at negative detuning and at resonance for s- and p-polarization in the strong coupling regime of a planar MC containing J-aggregates of a cyanine dye. Following non-resonant excitation, the emission spectra consist of three types of features: direct J-aggregate exciton emission, polariton emission, and uncoupled monomer emission through the transmission maxima of the distributed Bragg reflector beyond the stop-band. We compare our experimental results with a transfer-matrix calculation of the transmission for s- and p-polarization and explain the different positions of the polariton branches, the stop-band width, and the high- and low energy transmission maxima of the MC. Time-resolved PL experiments show an increase in the decay lifetime of the exciton-like mode when it is positioned far from the cavity mode. Close to resonance, the lower polariton branch decays with the natural lifetime of the J-aggregates.  相似文献   

5.
强耦合腔量子电动力学(cavity quantum electrodynamics,简称C-QED)系统主要用于研究受限于空间中的光与物质相互作用的物理现象。该系统为深入认识原子与光子间相互作用的动力学行为提供了有力工具。高精细度法布里-珀罗光学微腔(Fabry-Perot cavity, F-P腔)作为强耦合C-QED系统的核心部分,是实现光与物质间的强耦合、探索极端条件下光与物质间的相互作用、精确操控原子以及灵敏探测相关过程等的基础。简要介绍了高精细度F-P腔及其在强耦合C-QED中的应用,包括研究背景、现状及发展动态,并就未来的发展和应用进行了展望。  相似文献   

6.
卢佳慧  王光辉 《中国物理 B》2016,25(11):117804-117804
We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton(SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding.With Maxwell's equations and Maxwell stress tensor,we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides.The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters.Importantly,an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation.These special optical properties will open the door for potential optomechanical applications,such as optical tweezers and actuators.  相似文献   

7.
Nonlinear optical properties of dye J-aggregates embedded in a one-dimensional periodic medium are analyzed theoretically and numerically. The effect of strain-induced exciton self-localization in a chain of monomers on nonlinear optical properties of the system is investigated for weakly and highly ordered J-aggregates. It is found that exciton self-localization in a periodic medium enhances light absorption and effective optical susceptibility. Optical bistability thresholds are examined for weakly and strongly excited dye J-aggregate thin films. It is shown that the threshold intensity of incident electromagnetic field is lower by more than an order of magnitude as compared to that for a homogeneous medium.  相似文献   

8.
In this work, we demonstrate surface plasmon resonance properties and field confinement under a strong interaction between a waveguide and graphene nanoribbons (GNRs), obtained by coupling with a nanocavity. The optical transmission of a waveguide–cavity–graphene structure is investigated by finite-difference time-domain simulations and coupled-mode theory. The resonant frequency and intensity of the GNR resonant modes can be precisely controlled by tuning the Fermi energy and carrier mobility of the graphene, respectively. Moreover, the refractive index of the cavity core, the susceptibility χ(3) and the intensity of incident light have little effect on the GNR resonant modes, but have good tunability to the cavity resonant mode. The cavity length also has good tunability to the resonant mode of cavity. A strong interaction between the GNR resonant modes and the cavity resonant mode appears at a cavity length of L1 = 350 nm. We also demonstrate the slow-light effect of this waveguide–cavity–graphene structure and an optical bistability effect in the plasmonic cavity mode by changing the intensity of the incident light. This waveguide–cavity–graphene structure can potentially be utilised to enhance optical confinement in graphene nano-integrated circuits for optical processing applications.  相似文献   

9.
In this paper, we introduced the dressed exciton model of the semiconductor micro-cavity device. In the semiconductor micro cavity of vertical-cavity surface-emission device, the excitons first coupled with the cavity through an intra-electromagnetic field and formed the dressed excitons. Then these dressed excitons decayed into the vacuum cavity optical mode, as a multi-particle process. Through the quantum electrodynamics method, the dipole emission density and system energy decayed equation were obtained. And it was predicted that the excitons decay into a very narrow mode when the exciton-cavity coupling becomes strong enough.  相似文献   

10.
刘文楷  林世鸣  张存善 《物理学报》2002,51(9):2052-2056
采用传输矩阵方法利用半经典的线性色散模型,计算半导体微腔内同时存在重空穴激子、轻空穴激子时,在不同入射角度下的反射谱,同时,利用三简谐振子耦合模型计算了在不同入射角度下,腔模同时和重空穴激子模、轻空穴激子模耦合所形成的三支腔极化激元的能量,以及腔模、重空穴激子模、轻空穴激子模分别在三支腔极化激元中所占的权重,结果表明随着入射角的增加腔极化激元的高能支和两个低能支之间存在明显的反交叉现象,同时,腔模和重空穴激子模、轻空穴激子模在腔极化激元中所占的权重呈现增加或减小的趋势 关键词: 半导体微腔 腔极化激元 激子  相似文献   

11.
光镊利用强会聚激光对微粒产生的梯度力来捕获微粒,可以进行无损、远程操控,同时具有皮牛精度的测力特性,已经成为物理学、生命科学和胶体化学等研究领域中不可缺少的研究工具。光镊效应可以表现微小的光子动量和角动量,是物理学的重要教学工具。本文根据高斯光束传播和变换规律,设计具有稳定捕获性能的最小化光镊,并给出了典型参数。光镊系统由捕获激光、光束耦合系统、倒置生物显微镜和大数值孔径物镜组成,成像系统由物镜、摄影目镜和CCD相机组成。本光镊系统具有紧凑特性,同时通过保持物镜后瞳充满度来实现稳定捕获。在该最小光镊系统上,可以根据用户需求增加光镊阱位操控系统、刚度调节系统和其他辅助设备以满足不同操控要求,可以很好地满足科研和教学需求。  相似文献   

12.
由于腔模与激子对压力的依赖关系不同,所以可以选择不同的压力使激子和光场处于不同的耦合状态,从而实现对耦合的调谐。利用这种办法,我们观测到了代表激子与光场强耦合作用的Rabi分裂。由于在我们现有样品结构中压力对激子本征行为的影响很小,与以前报道的温度、电场等调谐方式相比,这种调谐方法不仅可以有效地调谐半导体微腔内激子与腔模的耦合程度,而且能够保持激子的本征性质在整个调谐过程中基本不变。这有助于研究在强耦合过程中激子极化激元的本征性质。将实验结果与压力下激子与腔模耦合理论进行拟合,得出了正确的Rabi分裂值。  相似文献   

13.
We report 3D multiple trapping of dielectric polystyrene (PS) beads and gold nano-particles (GNPs) in single beam optical tweezers system using an asymmetric beam of inhomogeneous intensity distribution. This special kind of beam of quasi-TEM11 profile was generated from intra-cavity CW-laser source operating at 532 nm. Multiple trapping of both the low refractive index rod-like Escherichia coli bacteria and 253 nm plasmonic GNPs dispersed in 1.025 μm PS beads which were homogenized in de-ionized water was realized utilizing this spatial beam. Laser-GNPs interaction rendered the enhancement of local surface plasmon resonance field around GNPs causing long-range aggregation of PS beads. The multiple trapping of plasmonic GNPs by the present simple method might find applications for micro- and nano-connectors, underlying physical processes in light-matter interaction assays for inter-particle force analysis, cancer diagnostic and photothermolysis, surface-enhanced Raman scattering (SERS) spectroscopy, and surface plasmon based biological and chemical sensors.  相似文献   

14.
We demonstrate that ultrasmall double-layer photonic-crystal-slab cavities exhibit a very high-Q value for a wide range of the layer spacing, which enables us to realize unique optomechanical coupling. By mechanically varying the separation, we can achieve extraordinarily large wavelength conversion. In addition, the light stored in the cavity can generate a large radiation force. We show that this system exhibits extremely high energy conversion efficiency between optical and mechanical energy, leading to a novel approach for the optomechanical control of light and matter.  相似文献   

15.
The transformation of the electronic excitation energy in a plane-layered nanostructure with two-dimensional J-aggregates of a cyanine dye has been studied theoretically. The dependences of the plasmon–exciton interaction energy on the system parameters have been determined. In the case of small values of the Rabi frequency, the rates of nonradiative energy transfer from surface plasmon–polaritons of the metal substrate to molecular excitons of J-aggregates have been calculated in terms of the perturbation theory. The dispersion laws for hybrid plasmon–exciton states have been determined, and it has been shown that the Rabi splitting can range up to 100 meV.  相似文献   

16.
For both the longitudinal binding force and the lateral binding force, a generic way of controlling the mutual attraction and repulsion (usually referred to as reversal of optical binding force) between chiral and plasmonic hybrid dimers or tetramers has not been reported so far. In this paper, by using a simple plane wave and an onchip configuration, we propose a possible generic way to control the binding force for such hybrid objects in both the near-field region and the far-field region. We also investigate different inter-particle distances while varying the wavelengths of light for each inter-particle distance throughout the investigations. First of all, for the case of longitudinal binding force, we find that chiral-plasmonic hybrid dimer pairs do not exhibit any reversal of optical binding force in the near-field region nor in the far-field region when the wavelength of light is varied in an air medium. However, when the same hybrid system of nanoparticles is placed over a plasmonic substrate, a possible chip, it is possible to achieve a reversal of the longitudinal optical binding force. Later, for the case of lateral optical binding force, we investigate a setup where we place the chiral and plasmonic tetramers on a plasmonic substrate by using two chiral nanoparticles and two plasmonic nanoparticles, with the setup illuminated by a circularly polarized plane wave. By applying the left-handed and the right-handed circular polarization state of light, we also observe the near-field and the far-field reversal of lateral optical binding force for both cases. As far as we know, so far, no work has been reported in the literature on the generic way of reversing the longitudinal optical binding force and the lateral optical binding force of such hybrid objects. Such a generic way of controlling optical binding forces can have important applications in different fields of science and technology in the near future.  相似文献   

17.
We analyze the optical response of small-diameter (?1 nm) semiconducting carbon nanotubes under the exciton-surface-plasmon coupling. Calculated optical absorption lineshapes exhibit the significant line (Rabi) splitting ∼0.1-0.3 eV as the exciton energy is tuned to the nearest interband surface plasmon resonance of the nanotube so that the mixed strongly coupled surface plasmon-exciton excitations are formed. We discuss possible ways to bring the exciton in resonance with the surface plasmon. The exciton-plasmon Rabi splitting effect we predict here for an individual carbon nanotube is close in its magnitude to that previously reported for hybrid plasmonic nanostructures artificially fabricated of organic semiconductors deposited on metallic films. We believe this effect may be used for the development of carbon nanotube based tunable optoelectronic device applications in areas such as nanophotonics and cavity quantum electrodynamics.  相似文献   

18.
Cavity-enhanced direct frequency comb spectroscopy combines broad spectral bandwidth, high spectral resolution, precise frequency calibration, and ultrahigh detection sensitivity, all in one experimental platform based on an optical frequency comb interacting with a high-finesse optical cavity. Precise control of the optical frequency comb allows highly efficient, coherent coupling of individual comb components with corresponding resonant modes of the high-finesse cavity. The long cavity lifetime dramatically enhances the effective interaction between the light field and intracavity matter, increasing the sensitivity for measurement of optical losses by a factor that is on the order of the cavity finesse. The use of low-dispersion mirrors permits almost the entire spectral bandwidth of the frequency comb to be employed for detection, covering a range of ~?10% of the actual optical frequency. The light transmitted from the cavity is spectrally resolved to provide a multitude of detection channels with spectral resolutions ranging from several gigahertz to hundreds of kilohertz. In this review we will discuss the principle of cavity-enhanced direct frequency comb spectroscopy and the various implementations of such systems. In particular, we discuss several types of UV, optical, and IR frequency comb sources and optical cavity designs that can be used for specific spectroscopic applications. We present several cavity-comb coupling methods to take advantage of the broad spectral bandwidth and narrow spectral components of a frequency comb. Finally, we present a series of experimental measurements on trace gas detections, human breath analysis, and characterization of cold molecular beams. These results demonstrate clearly that the wide bandwidth and ultrasensitive nature of the femtosecond enhancement cavity enables powerful real-time detection and identification of many molecular species in a massively parallel fashion.  相似文献   

19.
李明  陈阳  郭光灿  任希锋 《物理学报》2017,66(14):144202-144202
近年来表面等离激元得到了越来越多的关注和研究,得益于其能把电磁场束缚在金属-介质界面附近的亚波长尺度范围内.本文回顾了近年来表面等离激元在量子信息领域中的理论和实验研究,包括表面等离激元的基本量子性质、表面等离激元量子回路、在量子尺度下与物质的相互作用及其潜在应用.量子表面等离激元开辟了对表面等离激元基本物理性质研究的新方向,可以应用于高度集成化的量子集成光学回路,同时也可以用来增强光与量子发光体的相互作用.  相似文献   

20.
Transition metal dichalcogenide (TMD) monolayers, such as MoS2, possess a direct optical bandgap are useful for emerging ultrathin optoelectronics in the visible light range, whereas their thin thickness limits light absorption and emission properties. To address this drawback, one promising approach is to hybridize plasmonic nanostructures with monolayer TMDs to utilize local field enhancement effects owing to localized surface plasmon resonance (LSPR). Herein, we propose a strong enhancement of the local light–matter interaction in MoS2 monolayers on naturally generated nanoscale grooves. The nanogrooves are formed at grain boundaries (GBs) of template-stripped metal film substrates that are fabricated by mechanically stripping Ag films deposited on an ultra-flat Si substrate, wherein the nanogroove densities are systematically modulated by the Ag film thickness. We observe an effective photoluminescence enhancement factor of 758 and a Raman spectroscopy intensity enhancement of approximately 5 times in MoS2 on the subwavelength-scale nanogrooves, compared with that on grain planes, which is attributed to a strong local field enhancement of the LSPR effect. Moreover, this plasmonic enhancement effect is elucidated by dark-field scattering spectroscopy and optical simulations. Our results can facilitate the utilization of density-controllable plasmonic nanogrooves synthesized without nanopatterning techniques for plasmonic hybrids on 2D semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号