首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We report coherent operation of a singlet-triplet qubit controlled by the spatial arrangement of two confined electrons in an adjacent double quantum dot that is electrostatically coupled to the qubit. This four-dot system is the specific device geometry needed for two-qubit operations of a two-electron spin qubit. We extract the strength of the capacitive coupling between qubit and adjacent double quantum dot and show that the present geometry allows fast conditional gate operation, opening pathways toward implementation of a universal set of gates for singlet-triplet spin qubits.  相似文献   

2.
Geometric phases are robust to local noises and the nonadiabatic ones can reduce the evolution time, thus nonadiabatic geometric gates have strong robustness and can approach high fidelity. However, the advantage of geometric phase has not been fully explored in previous investigations. Here,a scheme is proposed for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths. In the scheme, only geometric phase can be accumulated in a fast way, and thus it not only fully utilizes the local noise resistant property of geometric phase but also reduces the difficulty in experimental realization. Numerical results show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path. Furthermore, it proposes to construct universal quantum gate on superconducting circuits, with the fidelities of single-qubit gate and nontrivial two-qubit gate can achieve 99.97% and 99.87%, respectively. Therefore, these high-fidelity quantum gates are promising for large-scale fault-tolerant quantum computation.  相似文献   

3.
Quantum logical operations using two-dimensional NMR have recently been described using the scalar coupling evolution technique [J. Chem. Phys. 109, 10603 (1998)]. In the present paper, we describe the implementation of quantum logical operations using two-dimensional NMR, with the help of spin- and transition-selective pulses. A number of logic gates are implemented using two and three qubits with one extra observer spin. Some many-in-one gates (or Portmanteau gates) are also implemented. Toffoli gate (or AND/NAND gate) and OR/NOR gates are implemented on three qubits. The Deutsch-Jozsa quantum algorithm for one and two qubits, using one extra work qubit, has also been implemented using spin- and transition-selective pulses after creating a coherent superposition state in the two-dimensional methodology.  相似文献   

4.
Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here, we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy center electron spins, which are characterized by fast quantum gates and long qubit coherence times. By varying the detuning, amplitudes, and phase difference of lasers applied to a nitrogen-vacancy center, one can directly realize an arbitrary single-qubit holonomic gate on the spin. Meanwhile, with the help of cavity-assisted interactions, a nontrivial two-qubit holonomic quantum gate can also be induced. The distinct merit of this scheme is that all the quantum gates are obtained via an all-optical geometric manipulation of the solid-state spins. Therefore, our scheme opens the possibility for robust quantum computation using solid-state spins in an all-optical way.  相似文献   

5.
We have studied a system composed by two endohedral fullerene molecules. We have found that this system can be used as good candidate for the realization of quantum gates. Each of these molecules encapsules an atom carrying a spin, therefore they interact through the spin dipole interaction. We show that a phase gate can be realized if we apply static and time dependent magnetic fields on each encased spin. We have evaluated the operational time of a π-phase gate, which is of the order of ns. We made a comparison between the theoretical estimation of the gate time and the experimental decoherence time for each spin. The comparison shows that the spin relaxation time is much larger than the π-gate operational time. Therefore, this indicates that, during the decoherence time, it is possible to perform some thousands of quantum computational operations. Moreover, through the study of concurrence, we get very good results for the entanglement degree of the two-qubit system. This finding opens a new avenue for the realization of quantum computers.  相似文献   

6.
A virtual spin formalism is suggested to demonstrate that a single quantum particle possessing eight suitable discrete energy levels can be used for storing three information qubits and organizing on them a universal set of logical operations that are necessary for constructing an arbitrary quantum algorithm. The formalism can be practically implemented on a nuclear spin 7/2 subjected to resonance rf pulses. A single-pulse realization is found for all quantum gates of a universal set, including a three-qubit gate.  相似文献   

7.
几何量子计算   总被引:4,自引:0,他引:4  
朱诗亮  汪子丹 《物理》2004,33(4):242-245
实现可集成的量子计算的关键步骤是实现保真度足够高的一组普适量子逻辑门,最近几年发展的几何量子计算使用几何位相来实现量子逻辑门,其特点是利用几何位相的整体几何性质来避免某些局域的无规噪声的影响,从而实现较高保真度的量子门,文章先简要介绍常规几何量子逻辑门的概念,然后重点介绍最近提出的非常规几何量子计算:量子计算中使用的逻辑门的总位相既包含有几何位相,又包含有动力学位相,但它仅依赖于一些几何特征,而且,对于任意的量子位输入态,在量子门操作过程中积累的位相要么是零,要么是仅依赖几何特征的位相。  相似文献   

8.
We study the low energy states of finite spin chains with isotropic (Heisenberg) and anisotropic (XY and Ising-like) antiferromagnetic exchange interaction with uniform and nonuniform coupling constants. We show that for an odd number of sites a spin cluster qubit can be defined in terms of the ground state doublet. This qubit is remarkably insensitive to the placement and coupling anisotropy of spins within the cluster. One- and two-qubit quantum gates can be generated by magnetic fields and intercluster exchange, and leakage during quantum gate operation is small. Spin cluster qubits inherit the long decoherence times and short gate operation times of single spins. Control of single spins is hence not necessary for the realization of universal quantum gates.  相似文献   

9.
A crucial building block for quantum information processing with trapped ions is a controlled-NOT quantum gate. In this Letter, two different sequences of laser pulses implementing such a gate operation are analyzed using quantum process tomography. Fidelities of up to 92.6(6)% are achieved for single-gate operations and up to 83.4(8)% for two concatenated gate operations. By process tomography we assess the performance of the gates for different experimental realizations and demonstrate the advantage of amplitude-shaped laser pulses over simple square pulses. We also investigate whether the performance of concatenated gates can be inferred from the analysis of the single gates.  相似文献   

10.
张茜  李萌  龚旗煌  李焱 《物理学报》2019,68(10):104205-104205
量子比特在同一时刻可处于所有可能状态上的叠加特性使得量子计算机具有天然的并行计算能力,在处理某些特定问题时具有超越经典计算机的明显优势.飞秒激光直写技术因其具有单步骤高效加工真三维光波导回路的能力,在制备通用型集成光量子计算机的基本单元—量子逻辑门中发挥着越来越重要的作用.本文综述了飞秒激光直写由定向耦合器构成的光量子比特逻辑门的进展.主要包括定向耦合器的功能、构成、直写和性能表征,集成波片、哈达玛门和泡利交换门等单量子比特逻辑门、受控非门和受控相位门等两量子比特逻辑门的直写加工,并对飞秒激光加工三量子比特逻辑门进行了展望.  相似文献   

11.
Quantum computers are in hot-spot with the potential to handle more complex problems than classical computers can.Realizing the quantum computation requires the universal quantum gate set {T,H,CNOT} so as to perform any unitary transformation with arbitrary accuracy.Here we first briefly review the Majorana fermions and then propose the realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions.Elementary cells consist of a quantum anomalous Hall insulator surrounded by a topological superconductor with electric gates and quantum-dot structures,which enable the braiding operation and the partial exchange operation.After defining a qubit by four chiral Majorana fermions,the singlequbit T and H quantum gates are realized via one partial exchange operation and three braiding operations,respectively.The entangled CNOT quantum gate is performed by braiding six chiral Majorana fermions.Besides,we design a powerful device with which arbitrary two-qubit quantum gates can be realized and take the quantum Fourier transform as an example to show that several quantum operations can be performed with this space-limited device.Thus,our proposal could inspire further utilization of mobile chiral Majorana edge states for faster quantum computation.  相似文献   

12.
Optimal construction of quantum operations is a fundamental problem in the realization of quantum computation. We here introduce a newly discovered quantum gate, B, that can implement any arbitrary two-qubit quantum operation with minimal number of both two- and single-qubit gates. We show this by giving an analytic circuit that implements a generic nonlocal two-qubit operation from just two applications of the B gate. Realization of the B gate is illustrated with an example of charge-coupled superconducting qubits for which the B gate is seen to be generated in shorter time than the CNOT gate.  相似文献   

13.
We present a complete scheme for quantum information processing using the unique features of alkaline-earth-metal atoms. We show how two completely independent lattices can be formed for the 1S0 and 3P0 states, with one used as a storage lattice for qubits encoded on the nuclear spin, and the other as a transport lattice to move qubits and perform gate operations. We discuss how the 3P2 level can be used for addressing of individual qubits, and how collisional losses from metastable states can be used to perform gates via a lossy blockade mechanism.  相似文献   

14.
郑仕标 《物理》2006,35(7):541-542
利用绝热演化,文章提出一种新的方法以实现量子相位门,这种相位移动既非源于动力学过程,也非源于几何操纵,它来源于暗态本身的演化,基于绝热演化的优点,这种量子逻辑门对实验参量的起伏不敏感,与几何相位门相比,这种相位门更简单,并且保真度可得到进一步提高。文章对这种相位门做一简述。  相似文献   

15.
We provide an analytic way to implement any arbitrary two-qubit unitary operation, given an entangling two-qubit gate together with local gates. This is shown to provide explicit construction of a universal quantum circuit that exactly simulates arbitrary two-qubit operations in SU(4). Each block in this circuit is given in a closed form solution. We also provide a uniform upper bound of the applications of the given entangling gates, and find that exactly half of all the controlled-unitary gates satisfy the same upper bound as the CNOT gate. These results allow for the efficient implementation of operations in SU(4) required for both quantum computation and quantum simulation.  相似文献   

16.
《Physics letters. A》2020,384(18):126387
Quantum process tomography (QPT) of each directly implementable quantum gate used in the IBM quantum processors is performed to compute gate error in order to check viability of complex quantum operations in the superconductivity-based quantum computers introduced by IBM. QPT of C-NOT gates is performed for three configurations available in IBM QX4. For the other allowed gates QPT have been performed for every allowed position (i.e., by placing the gates in different qubit lines) for IBM QX4 architecture, and thus, gate fidelities are obtained. Gate fidelities are observed to be lower than the corresponding values obtained in the other technologies, like NMR. Further, gate fidelities for all the single-qubit gates are obtained for IBM QX2 architecture by placing the gates in the third qubit line (q[2]). It's observed that the IBM QX4 architecture yields better gate fidelity compared to IBM QX2 in all cases except Y gate.  相似文献   

17.
Quantum gates, which are the essential building blocks of quantum computers, are very fragile. Thus, to realize robust quantum gates with high fidelity is the ultimate goal of quantum manipulation. Here, we propose a nonadiabatic geometric quantum computation scheme on superconducting circuits to engineer arbitrary quantum gates, which share both the robust merit of geometric phases and the capacity to combine with optimal control technique to further enhance the gate robustness. Specifically, in our proposal, arbitrary geometric single-qubit gates can be realized on a transmon qubit, by a resonant microwave field driving, with both the amplitude and phase of the driving being timedependent. Meanwhile, nontrivial two-qubit geometric gates can be implemented by two capacitively coupled transmon qubits, with one of the transmon qubits’ frequency being modulated to obtain effective resonant coupling between them. Therefore, our scheme provides a promising step towards fault-tolerant solid-state quantum computation.  相似文献   

18.
A relationship between the phase factor of a quantum gate, the layout of energy levels of its effective Hamiltonian, and the implementation time of the gate is demonstrated. By an example of the direct and inverse quantum Fourier transforms (QFT) gates for a qutrit represented by a quadrupole nucleus with spin I = 1, as well as for a system of two qubits (I = 1/2), effective Hamiltonians and minimum implementation times corresponding to different global phases are obtained. Implementation schemes are proposed for these Hamiltonians by the nuclear magnetic resonance (NMR) technique with the use of sequences of radio-frequency (RF) pulses separated by intervals of free evolution. Analytic results for the minimum times of gates are in agreement with the results obtained by numerical optimization methods. The phase considered is divided into dynamic and geometric parts.  相似文献   

19.
We propose a new class of unconventional geometric gates involving nonzero dynamic phases, and elucidate that geometric quantum computation can be implemented by using these gates. Comparing with the conventional geometric gate operation, in which the dynamic phase shift must be removed or avoided, the gates proposed here may be operated more simply. We illustrate in detail that unconventional nontrivial two-qubit geometric gates with built-in fault-tolerant geometric features can be implemented in real physical systems.  相似文献   

20.
Implements for geometric quantum gates are analyzed in the electric circuit. We find that, by operating the difference of geometric phase between eigenstates of Hamiltonian for single-particle system and two-particle system respectively, one may perfectly preserve the messages for single-particle gate as well as entangling geometric two-particle gate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号