首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 46 毫秒
1.
王璐  高学平 《电化学》2020,26(5):750
锂-硫电池具有高的理论质量/体积能量密度,因而成为最具发展潜力的高比能二次电池体系. 然而,由于硫载体通常采用轻质的碳纳米材料,导致硫基复合材料的振实密度和体积比容量均偏低,制约了电池体积能量密度的提升. 本文尝试采用具有高密度特征的钴酸锂(LiCoO2)作为硫的载体材料,以构筑高振实密度的硫基复合材料,进而提高硫正极的体积比容量. 研究显示,LiCoO2对可溶性多硫化物具有较强的吸附作用,能够促进硫的电化学转化,因而提高了硫的活性物质利用率和循环稳定性. 同时,由于具有高的振实密度(1.90 g·cm-3),S/LiCoO2复合材料的首周体积比容量高达1750.5 mAh·cm-3,是常规硫/碳复合材料的2.2倍. 因此,本文利用具有高密度特征的LiCoO2作为硫载体来提升硫复合材料的体积比容量,有助于实现锂-硫电池的高体积能量密度.  相似文献   

2.
郭瑞琪  吴锋  王欣然  白莹  吴川 《电化学》2022,28(12):2219011
全球能源结构转型推动了电化学储能系统的飞速发展,提高能量密度是发展新型二次电池的重要方向和研究热点。然而,受限于传统的嵌入式反应,锂离子电池在能量密度上已经逐渐达到极限。要发展更高能量密度的新型二次电池,需要在新理论、新材料和新体系上进行突破。基于此,本文总结了20年来多电子反应材料概念的形成、理论的发展、材料创制的历程。在“轻元素多电子反应”和“多离子效应”核心设计准则的指导下,具有上述特征的电极材料与电池结构不断发展迭代,引领了高能量密度电池的发展方向。从阳离子氧化还原到阴阳离子协同氧化还原,从嵌入式反应到合金化反应,从传统有机液态体系到电池固态化,本文梳理了典型的多电子反应正负极材料的结构特性、体系创新和工程化前景,剖析了多电子反应电极材料的瓶颈问题,并分析了电池固态化发展所面临的挑战。最后,对高能量密度电池的未来发展趋势和难点进行了归纳与展望。  相似文献   

3.
正在崛起的新能源技术为化学电源的发展提供了巨大机遇,同时也提出了巨大的技术挑战:即在现有基础上大幅度提升能量和功率密度,以满足各个层次高效储电的要求.利用多电子反应电池体系是成倍提高化学电源能量密度的有效途径.本文以作者所在课题组的研究工作为主,简要介绍了几类典型的多电子电极反应,包括金属硼化物多电子氧化反应、合金储锂反应、高价金属化合物结构转化反应等,以及这些反应体系用于构建高能量密度电池的关键问题,并试图分析解决这些问题的可能技术途径.  相似文献   

4.
丁宇森  张璞  黎洪  朱文欢  魏浩 《化学进展》2021,33(4):610-632
锂硒电池是一种非常有潜力的下一代高能量密度电池,具有理论体积能量密度大(3253 mAh·cm-3)、电导率高(1×10-3 S·m-1)、环境友好等优良特性,已经逐渐成为电化学领域的一个研究热点。然而,目前锂硒电池仍面临活性材料利用率低、库仑效率低、容量衰减快以及多硒化物中间体穿梭等诸多问题。针对这些问题,国内外研究人员进行了大量的探索,例如,在正极处采用多种碳材料、金属化合物、硒合金等进行封装改性;在负极处采用固体电解质界面方法进行保护。本文全面综述了锂硒电池在正极、负极、电解质、隔膜、黏结剂、集流体等方面取得的最新研究进展,特别是在纳米硒的封装、固体电解质保护层的制备、新型多功能隔膜的研究、多种黏结剂和集流体的应用等方面进行了重点总结。最后,对锂硒电池的未来发展前景和商业化应用进行了展望。  相似文献   

5.
Aprotic Li-O2 battery has attracted considerable interest for high theoretical energy density, however the disproportionation of the intermediate of superoxide (O2) during discharge and charge leads to slow reaction kinetics and large voltage hysteresis. Herein, the chemically stable ruthenium tris(bipyridine) (RB) cations are employed as a soluble catalyst to alternate the pathway of O2 disproportionation and its kinetics in both the discharge and charge processes. RB captures O2 dimer and promotes their intramolecular charge transfer, and it decreases the energy barrier of the disproportionation reaction from 7.70 to 0.70 kcal mol−1. This facilitates the discharge and charge processes and simultaneously mitigates O2 and singlet oxygen related side reactions. These endow the Li-O2 battery with reduced discharge/charge voltage gap of 0.72 V and prolonged lifespan for over 230 cycles when coupled with RuO2 catalyst. This work highlights the vital role of superoxide disproportionation for Li-O2 battery.  相似文献   

6.
Lithium–sulfur (Li‐S) batteries have recently received great attention because they promise to provide energy density far beyond current lithium ion batteries. Typically, Li‐S batteries operate by conversion of sulfur to reversibly form different soluble lithium polysulfide intermediates and insoluble lithium sulfides through multistep redox reactions. Herein, we report a functional electrolyte system incorporating dimethyl disulfide as a co‐solvent that enables a new electrochemical reduction pathway for sulfur cathodes. This pathway uses soluble dimethyl polysulfides and lithium organosulfides as intermediates and products, which can boost cell capacity and lead to improved discharge–charge reversibility and cycling performance of sulfur cathodes. This electrolyte system can potentially enable Li‐S batteries to achieve high energy density.  相似文献   

7.
Halide solid electrolytes, known for their high ionic conductivity at room temperature and good oxidative stability, face notable challenges in all–solid–state Li–ion batteries (ASSBs), especially with unstable cathode/solid electrolyte (SE) interface and increasing interfacial resistance during cycling. In this work, we have developed an Al3+–doped, cation–disordered epitaxial nanolayer on the LiCoO2 surface by reacting it with an artificially constructed AlPO4 nanoshell; this lithium–deficient layer featuring a rock–salt–like phase effectively suppresses oxidative decomposition of Li3InCl6 electrolyte and stabilizes the cathode/SE interface at 4.5 V. The ASSBs with the halide electrolyte Li3InCl6 and a high–loading LiCoO2 cathode demonstrated high discharge capacity and long cycling life from 3 to 4.5 V. Our findings emphasize the importance of specialized cathode surface modification in preventing SE degradation and achieving stable cycling of halide–based ASSBs at high voltages.  相似文献   

8.
In aqueous zinc (Zn) batteries, the Zn anode suffers from severe corrosion reactions and consequent dendrite growth troubles that cause fast performance decay. Herein, we uncover the corrosion mechanism and confirm that the dissolved oxygen (DO) other than the reputed proton is a principal origin of Zn corrosion and by-product precipitates, especially during the initial battery resting period. In a break from common physical deoxygenation methods, we propose a chemical self-deoxygenation strategy to tackle the DO-induced hazards. As a proof of concept, sodium anthraquinone-2-sulfonate (AQS) is introduced to aqueous electrolytes as a self-deoxidizing additive. As a result, the Zn anode sustains a long-term cycling of 2500 h at 0.5 mA cm−2 and over 1100 h at 5 mA cm−2 together with a high Coulombic efficiency up to 99.6 %. The full cells also show a high capacity retention of 92 % after 500 cycles. Our findings provide a renewed understanding of Zn corrosion in aqueous electrolytes and also a practical solution towards industrializing aqueous Zn batteries.  相似文献   

9.
A rechargeable Li metal anode coupled with a high-voltage cathode is a promising approach to high-energy-density batteries exceeding 300 Wh kg−1. Reported here is an advanced dual-additive electrolyte containing a unique solvation structure and it comprises a tris(pentafluorophenyl)borane additive and LiNO3 in a carbonate-based electrolyte. This system generates a robust outer Li2O solid electrolyte interface and F- and B-containing conformal cathode electrolyte interphase. The resulting stable ion transport kinetics enables excellent cycling of Li/LiNi0.8Mn0.1Co0.1O2 for 140 cycles with 80 % capacity retention under highly challenging conditions (≈295.1 Wh kg−1 at cell-level). The electrolyte also exhibits high cycling stability for a 4.6 V LiCoO2 (160 cycles with 89.8 % capacity retention) cathode and 4.95 V LiNi0.5Mn1.5O4 cathode.  相似文献   

10.
For Li-Se batteries, ether- and carbonate-based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long-chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one-step solid-solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (>40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile-based electrolyte is introduced for the Li-Se system, and a two-plateau conversion mechanism is proposed. This new Li-Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm−3) with a record-breaking Se content (80 wt %) and high Se loading (8 mg cm−2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L−1, surpassing that of LiCoO2.  相似文献   

11.
Calcium-metal batteries (CMBs) provide a promising option for high-energy and cost-effective energy-storage technology beyond the current state-of-the-art lithium-ion batteries. Nevertheless, the development of room-temperature CMBs is significantly impeded by the poor reversibility and short lifespan of the calcium-metal anode. A solvation manipulation strategy is reported to improve the plating/stripping reversibility of calcium-metal anodes by enhancing the desolvation kinetics of calcium ions in the electrolyte. The introduction of lithium salt changes the electrolyte structure considerably by reducing coordination number of calcium ions in the first solvation shell. As a result, an unprecedented Coulombic efficiency of up to 99.1 % is achieved for galvanostatic plating/stripping of the calcium-metal anode, accompanied by a very stable long-term cycling performance over 200 cycles at room temperature. This work may open up new opportunities for development of practical CMBs.  相似文献   

12.
The limited triple-phase boundaries (TPBs) in solid-state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high-performance all-solid-state lithium-oxygen (ASS Li-O2) batteries a challenge. Herein, an adjustable-porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in-situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+/e, as well as ensures fast flow of O2, forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li-O2 battery based on this adjustable-porosity PCE exhibits superior performances with high specific capacity (5963 mAh g−1), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li-O2 batteries.  相似文献   

13.
Li-metal batteries (LMB), although providing high energy density, face the grand challenge of identifying good electrolyte solvents for cycling. Common solvents are either only stable against lithium metal anode or only stable against LiNixMnyCo1-x-yO2 (NMC) cathode. There is significant effort trying to increase the cathode stability for ether electrolytes, which are in general stable against lithium metal anode. In comparison, there is much less effort trying to increase the anode stability of electrolytes that are stable against NMC cathode. One example is the sulfone-based electrolyte. It has good cathode stability but is hindered from practical application because of (1) high viscosity and poor wetting capability and (2) poor anode stability. Here, we solve these issues by modifying the sulfone molecules using resonance and electron withdrawing effect. The viscosity is significantly reduced by delocalizing the electrons through introducing additional oxygen on the molecular backbone and applying appropriate fluorination. The resulting molecule 2,2,2-trifluoroethyl mesylate (TFEM) has decreased Lewis basicity and less reactivity toward Li+. The electrolyte based on TFEM as single solvent enables cycling of LMB under harsh conditions of low N/P ratio (21 mg/cm2 NMC811 and 50 μm Li) with 90 % capacity retention after 160 cycles at C/3 discharge rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号