首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
In this work,we study the renormalization group invariance of the recently proposed covariant power counting in the case of nucleon-nucleon scattering [Chin.Phys.C 42(2018) 014103] at leading order.We show that unlike the Weinberg scheme,renormalizaion group invariance is satisfied in the ~3 P_0 channel.Another interesting feature is that the ~1 S_0 and ~3 P_1 channels are correlated.Fixing the relevant low energy constants by fitting to the ~1 S_O phase shifts at T_(lab).=10 and 25 MeV with cutoff values ∧=400-650 MeV,one can describe the ~3 p_1 phase shifts relatively well.In the limit of ∧→∞,the ~1 S_0 phase shifts become cutoff-independent,whereas the ~3 P_1 phase shifts do not.This is consistent with the Wigner bound and previous observations that the ~3 P_1 channel is best treated perturbatively.As for the ~1 P_1 and ~3 S_1-~3 D_1 channels,renormalization group invariance is satisfied.  相似文献   

3.
4.
In our previous work [Phys. Lett. (to be published), Chin. Phys. Lett. 23 (2006) 3226], we introduced a separable pairing force for relativistic Hartree-Bogoliubov calculations. This force was adjusted to reproduce the pairing properties of the Gogny force in nuclear matter. By using the well known techniques of Talmi and Moshinsky it can be expanded in a series of separable terms and converges quickly after a few terms. It was found that the pairing properties can be depicted on almost the same footing as the original pairing interaction, not only in nuclear matter, but also in finite nuclei. In this study, we construct a relativistic quasiparticle random phase approximation (RQRPA) with this separable pairing interaction and calculate the excitation energies of the first excited 2^+ states and reduced B(E2; 0^+ → 2^+) transition rates for a chain of Sn isotopes in RQRPA. Compared with the results of the full Gogny force, we find that this simple separable pairing interaction can describe the pairing properties of the excited vibrational states as well as the original pairing interaction.  相似文献   

5.
In this paper, we study the top content of nucleon by analyzing azimuthal asymmetries in lepton-nucleon deep inelastic scattering(DIS), also we search for the Higgs boson associated production channel, tˉt H, at the large hadron-electron collider(LHe C) caused by boson-gluon fusion(BGF) contribution. We use azimuthal asymmetries inγ*Q cross sections in terms of helicity contributions to semi-inclusive deep inelastic scattering to investigate numerical properties of the cos 2? distribution. We conclude that measuring azimuthal distributions caused by intrinsic heavy quark production can directly probe heavy quarks inside nucleon. Moreover, in order to estimate the probability of producing the Higgs boson, we suggest another approach in the framework of calculating tˉt cross section in boson-gluon fusion mechanism. Finally, we can confirm that this observed massive particle is referred to Higgs boson produced by fermion loop.  相似文献   

6.
We examine in detail a recent work(D. Gülmez, U. G. Mei?ner and J. A. Oller, Eur. Phys. J. C,77: 460(2017)), where improvements to make ρρ scattering relativistically covariant are made. The paper has the remarkable conclusion that the J =2 state disappears with a potential which is much more attractive than for J =0,where a bound state is found. We trace this abnormal conclusion to the fact that an "on-shell" factorization of the potential is done in a region where this potential is singular and develops a large discontinuous and unphysical imaginary part. A method is developed, evaluating the loops with full ρ propagators, and we show that they do not develop singularities and do not have an imaginary part below threshold. With this result for the loops we define an effective potential, which when used with the Bethe-Salpeter equation provides a state with J =2 around the energy of the f_2(1270). In addition, the coupling of the state to ρρ is evaluated and we find that this coupling and the T matrix around the energy of the bound state are remarkably similar to those obtained with a drastic approximation used previously, in which the q~2 terms of the propagators of the exchanged ρ mesons are dropped, once the cut-off in the ρρ loop function is tuned to reproduce the bound state at the same energy.  相似文献   

7.
Based on analysis of scattering matrix S, and its properties such as analyticity, unitarity, Lorentz invariance, and crossing symmetry relation, the Regge theory was proposed to describe hadron-hadron scattering at high energies before the advent of QCD, and correspondingly a Reggeon concept was born as a mediator of strongly interaction. This theory serves as a successful approach and has explained a great number of experimental data successfully, which proves that the Regge theory can be regarded as a basic theory of hadron interaction at high energies and its validity in many applications. However, as new experimental data come out, we have some difficulties in explaining the data. The new experimental total cross section violates the predictions of Regge theory, which shows that Regge formalism is limited in its applications to high energy data. To understand new experimental measurements, a new exchange theory was consequently born and its mediator is called Pomeron, which has vacuum quantum numbers. The new theory named as Pomeron exchange theory which reproduces the new experimental data of diffractive processes successfully. There are two exchange mediators: Reggeon and Pomeron. Reggeon exchange theory can only produce data at the relatively lower energy region, while Pomeron exchange theory fits the data only at higher-energy region, separately. In order to explain the data in the whole energy region, we propose a Reggeon-Pomeron model to describe high-energy hadron- hadron scattering and other diffractive processes. Although the Reggeon-Pomeron model is successful in describing high-energy hadron-hadron interaction in the whole energy region, it is a phenomenological model. After the advent of QCD, people try to reveal the mystery of the phenomenological theory from QCD since hadron-hadron processes is a strong interaction, which is believed to be described by QCD. According to this point of view, we study the QCD nature of Reggeon and Pomeron. We claim that the Reggeon exchange is an exchange of mult  相似文献   

8.
In order to use high-precision realistic nucleon-nucleon(NN) potentials in relativistic many-body problems,new versions of the charge-dependent Bonn(CD-Bonn) NN potential are constructed with pseudovector pionnucleon coupling,instead of pseudoscalar coupling used in the original CD-Bonn potential as given by Machleidt~(2)).To describe precisely the charge dependence in the NN scattering data,two effective scalar mesons are introduced,whose coupling constants with nucleons are independently determined for each partial wave and for the total angular momentum J≤4.The coupling constants between the vector and pseudovector mesons and a nucleon are identical in all channels.Three revised CD-Bonn potentials with the pseudovector pion-nucleon coupling(pvCD-Bonn) are generated by fitting the Nijmegen PWA phase shift data and the deuteron binding energy with different pion-nucleon coupling strengths.The potentials reproduce the phase shifts in the spin-single channels and the low-energy NN scattering parameters very well,but result in significantly different mixing parameters in the spin-triplet channels.The Dstate probabilities for the deuteron range from 4.22% to 6.05%,demonstrating that the potentials contain different components of the tensor force,which is useful when considering the role of the tensor force in nuclear few-and many-body systems.  相似文献   

9.
In order to consider the thermal and electrical coherent transport in a mesoscopic conductor under the influence of electron-electron interaction, in this paper, we establish a method in terms of which one can analytically obtain the Hartree self-consistent potential instead of computing it by the numerical iterative procedure as usual, which is convenient for us to describe the thermal and electric current flow through a mesoscopic conductor. If we study the electron-electron interaction at the Hartree approximation level, the Hartree potential satisfies the Poisson equation and Schroedinger equation, so when we expand the action function S(x) by Planck constant h, the self-consistent potential and the wavefunction can be solved analytically order by order, and the thermal and electrical conductance can thus be obtained readily. However, we just show the quantum corrections up to the second order.  相似文献   

10.
This paper presents the results of a study that compares CTOM, a microscopic optical model potential(OMP), which is an optical model co-created by the China Nuclear Data Center & Tuebingen University, to CH89, which is a typical phenomenological OMP.The respective OMPs were tested by applying them to the modelling of nucleon elastic scattering and(d,p) transfer reactions involving14C,36S, and58Ni targets at both low and relatively high energies. The results demonstrated that although both potentials successfully accounted for the angular distributions of both the elastic scattering and transfer cross sections, the absolute values of the transfer cross sections calculated using CTOM were approximately 25% larger than those calculated using CH89. This increased transfer cross sections allowed CTOM to produce single particle strength reduction factors for the three reactions that were consistent with those extracted from(e,e′p) reactions as well as with more recent(p,2p) and(p,pn) reactions. Notch tests suggested that nucleon elastic scattering and transfer reactions are sensitive to different regions of the OMP;accordingly,phenomenological OMPs, which are constrained only by elastic scattering cross sections, may not be sufficient for nucleon transfer reactions. Therefore, we suggest that microscopic OMPs, which reflect more theoretical considerations, should be preferred over phenomenological ones in calculations of direct nuclear reactions.  相似文献   

11.
We study the electronic Raman scattering in the cuprates to distinguish the two possible scenarios of the pseudogap normal state. In one scenario, the pseudogap is assumed to be caused by phase fluctuations of the preformed Cooper pairs. We find that pair-breaking peaks appear in both the B1g and B2g Raman channels, and they axe smeared and tend to shift to the same energy with the increasing strength of phase fluctuations. Thus both channels reflect the same pairing energy scale, irrespectively of the doping level. In another scenario, the pseudogap is assumed to be caused by a hidden order that competes with the superconducting order. As an example, we assume that the hidden order is the d-density-wave (DDW) order. We find analytically and numerically that in the DDW normal state there is no Raman peak in the B2g channel in a tight-binding model up to the second nearest-neighbor hopping, while the Raman peak in the Big channel reflects the energy gap caused by the DDW order. This behavior is in agreement with experiments in the pseudogap normal state. To gain further insights, we also calculate the Raman spectra in the DDW+SC state. We study the doping and temperature dependence of the peak energy in both channels and find a two-gap behavior, which is in agreement with recent Raman experiments. Therefore, our results shed light on the hidden order scenario for the pseudogap.  相似文献   

12.
田源  马中玉 《中国物理快报》2006,23(12):3226-3229
The method introduced by Duguet is adopted to derive a separable form of the pairing interaction in the ^1So channel from a bare or an effective nucleon-nucleon (NN) interaction in nuclear matter. With this approach the separable pairing interaction reproduces the pairing properties provided by its corresponding NN interaction. In this work, separable forms of pairing interactions in the ^1So channel for the bare NN interaction, Bonn potential and the Gogny effective interaction are obtained. It is found that the separable force of the Gogny effective interaction in the 1So channel has a clear link with the bare NN interaction. With such a simple separable form pairing properties provided by the Gogny force in nuclear matter can be reproduced.  相似文献   

13.
Based on the quark-gluon structure of nucleon and the existence of Odderon in nucleon via gluon selfinteraction, the elastic scattering of pp at high energies is studied. Our theoretical predictions reproduce experimental data perfectly. The contributions from individual terms of quark-quark, gluon-gluon interactions, quark-gluon interference and the Odderon terms to total cross section are analyzed. In addition to the leading quark-quark contribution, the Odderon contribution is quite important. In particular, the Odderon plays an essential role in fitting to data. Therefore, We may claim that the high energy pp and pp elastic scattering may be good processes to search for the Odderon, the three Reggeized gluon bound states.  相似文献   

14.
It is well known that the quantum fluctuation of entanglement(QFE) between Unruh–De Witt detector(modeled by a two-level atom) is always investigated in a relativistic setting. However, both of the Unruh radiation and quantum fluctuation effects play an important role in precise measurements of quantum entanglement. In this paper, we have quantitatively analyzed how the relativistic motion affects the QFE for two entangled Unruh–De Witt detectors, one of which is accelerated and interacting with the neighbor external scalar field. Our results show that the QFE, which initially increases by the Unruh thermal noise, will suddenly decay when the acceleration reaches to a considerably large value. Therefore, the relativistic effect will lead to non-negligible QFE effect. We also find that the initial QFE(without acceleration effect) reaches its minimum value at the maximally entangled state and the separable state. More importantly, our analysis demonstrates that although the QFE has a huge decay when the acceleration is greater than ~ 0.96, the ratio of ?E/C is still very large, due to the simultaneous decay of concurrence to a very low value. Finally, enlightened by the well-known equivalence principle,we discuss the possibility of applying the above findings to the dynamics of QFE under the influence of gravitation field.  相似文献   

15.
Using the Seiberg-Witten map, we obtain a quantum electrodynamics on a noncommutative space, which has arbitrary charge and keep the gauge invariance to at the leading order in theta. The one-loop divergence and Compton scattering are reinvestigated. The noncommutative effects are larger than those in ordinary noncommutative quantum electrodynamics.  相似文献   

16.
Based on a theory of extra dimensional confinement of quantum particles [E. R. Hedin, Physics Essays, 2012, 25(2): 177], a simple model of a nucleon nucleon (NN) central potential is derived which quantitatively reproduces tile radial profile of other models, without adjusting any free pa- rameters. It is postulated that a higher-dimensional simple harmonic oscillator confining potential localizes particles into three-dimensional (3D) space, but allows for an ewmescent penetration of the particles into two higtmr spatial dimensions. Producing an effect identical with the relativistic quan- tum phenolnenon of zitterbewegung, the higher-dimensional oscillations of amplitude h(mc) call be alternatively viewed as a localized curvature of 3D space back and forth into the higher dimensions. The overall spatial curvature is proportional to the particle's extra-dimensional ground state wave function in tile higher-dimensional harmonic confining potential well. Minimizing the overlapping curvature (proportional to the energy) of two particles in proximity to each other, subject to the constraint that for the two particles to occupy the same spatial location one of them must be excited into the 1st excited state of the harmonic potential well, gives the desired NN potential. Specifying only the imcleon masses, the resulting potential well and repulsive core reproduces the radial profile of several published NN central potential models. In addition, the predicted height of the repulsive core, when used to estimate the maximum neutron star mass, matches well with the best estimates from relativistic theory incorporating standard nuclear matter equations of state. Nucleon spin, Coulomb interactions, and internal nucleon structure are not considered in the theory as presented in this article.  相似文献   

17.
Anisotropic flows per nucleon (v1/A, v2/A, v3/A and v4/A) of light fragments up to the mass number 4 as a function of transverse momentum per nucleon are studied for 55 Me V/nucleon 58Fe+58Fe and 58 Ni+ 58 Ni at large impact parameters by the isospin-dependent quantum molecular dynamics model. The effects of symmetry energy and nucleon-nucleon cross sections, which are both isospin-dependent on anisotropic flows, are studied in detail. In comparison of the two systems with or without symmetry potential term, the results show that the strength of flows is sensitive to symmetry potential and nucleon-nucleon cross sections, which mainly cause a repulsion effect in this energy region.  相似文献   

18.
In equilibrium statistical field theory, the partition function has fundamental importance. In this paper we propose a direct and general method for calculating the partition function and equation of state of QCD at finite chemical potential. It is found that the partition function is totally determined by the dressed quark propagator at finite chemical potential up to a multiplicative constant. From this a criterion for the phase transition between the Nambu and the Wigner phases is obtained. This general method is applied to two specific cases: the free quark theory and QCD with a model dressed quark propagator having confinement features. In the first case, the standard Fermi distribution at T = 0 is reproduced. In the second case, we apply the conclusion in previous works to obtain the dressed quark propagator at finite chemical potential and find the unphysical result that the baryon number density vanishes for all values of chemical potential. The reason for this result is discussed.  相似文献   

19.
It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relation. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed.  相似文献   

20.
In this paper we develop a variational theory to study the dynamic properties of ultracold Bose gas in a funnel external potential. We obtain one-dimensional nonlinear equation which describes the dynamics of transverse tight confined bosonic gas from three-dimension to one-dimension, and find one-dimensional s-wave scattering length which depends on the shape of transverse confining potential. If the funnel trapping potential is strong enough at zero temperature, all transverse excitations are frozen. We find the dynamic equation which describes the Tonks-Girardeau gas and present a qualitative analysis of the experimental accessibility of the Tonks Girardeau gas with funnel-trapped alkalic atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号