首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoscopic SNS junctions have been studied both in the ballistic and diffusive regimes. SNS junctions in the ballistic regime behave as an ideal Fermion oscillator which is to be compared with the Boson oscillator or the Planck theory of blackbody radiation. The current of mesoscopic SNS junctions in the diffusive regime has the same phase dependence as that of dirty-limit short weak links derived by a transport equation. Recent theories of mesoscopic SNS junctions have successfully unified the theories of the tunnel Josephson junction, the clean-limit short weak link and the dirty-limit short weak link which look very different conceptionally. We can even observe transitions among the three types of junctions when we change the transmission coefficients of the barriers between the superconducting electrodes experimentally. We looked experimentally for the optimum transmission coefficient which gives the minimum low-frequency telegraph noise in order to make a low-noise SQUID magnetometor for brain science. We have observed signals of 5 fT from human brains with a good signal-to-noise ratio using the SQUID magnetometor of the SNS junctions. The 64-channel SQUID magnetometer of SNS junctions has confirmed that mesoscopic SNS junctions are important not only theoretically but also practically. These data could encourage people studying SNS junctions of high-Tc superconductors.  相似文献   

2.
Superconducting proximity junctions made of topological insulator (TI) nanoribbons (NRs) provide a useful platform for studying topological superconductivity. We report on the fabrication and measurement of Josephson junctions (JJs) using Sb-doped Bi2Se3 NRs in contact with Al electrodes. Aharonov–Bohm and Altshuler–Aronov–Spivak oscillations of the axial magneto-conductance of TI NR were observed, indicating the existence of metallic surface states along the circumference of the TI NR. We observed the supercurrent in the TI NR JJ and subharmonic gap structures of the differential conductance due to multiple Andreev reflections. The interface transparency of the TI NR JJs estimated based on the excess current reaches τ = 0.83, which is among the highest values reported for TI JJs. The temperature dependence of critical current is consistent with the short and ballistic junction model confirming the formation of highly transparent superconducting contacts on the TI NR. Our observations would be useful for exploring topological Josephson effects in TI NRs.  相似文献   

3.
It is investigated the possibility of controlling the electric flow through a ferromagnet–superconductor junction by spin polarization, within a simple, ideal model of a perfect ferromagnetic–superconductor junction. The ferromagnetic and superconducting properties as well as the Andreev reflection are briefly reviewed and the electrical resistance of the junction is computed both in the diffusive and ballistic regime for the ferromagnetic sample. It is shown that the resistance of the junction increases with increasing magnetization, including both positive or negative jumps on passing from the ballistic to the diffusive regime.  相似文献   

4.
Carbon nanotube Josephson junctions in the open quantum dot limit are fabricated using Pd/Al bilayer electrodes, and exhibit gate-controlled superconducting switching currents. Shapiro voltage steps can be observed under radio frequency current excitations, with a damping of the phase dynamics that strongly depends on the gate voltage. These measurements are described by a standard resistively and capacitively shunted junction model showing that the switching currents from the superconducting to the normal state are close to the critical current of the junction. The effective dynamical capacitance of the nanotube junction is found to be strongly gate dependent, suggesting a diffusive contact of the nanotube.  相似文献   

5.
Self-assembled YBaCuO diffusive grain boundary submicron Josephson junctions offer a realization of a special regime of the proximity effect, where normal state coherence prevails on the superconducting coherence in the barrier region. Resistance oscillations from the current-voltage characteristic encode mesoscopic information on the junction and more specifically on the minigap induced in the barrier. Their persistence at large voltages is evidence of the long lifetime of the antinodal (high energy) quasiparticles.  相似文献   

6.
拓扑超导体自身具有对量子退相干天然的免疫性以及可编织性,这使得它在现代量子计算领域中受到了越来越多的重视,并且成为了下一代计算技术中最有希望的候选者之一。由于拓扑超导态在固有拓扑超导体中相当罕见,因此,当前大部分实验上的工作主要集中在由 s 波超导体与拓扑绝缘体之间通过近邻效应所诱导的拓扑超导体上。本论文中,我们回顾了基于拓扑绝缘体/超导体异质结的拓扑超导体的研究进展。在理论上,Fu 和 Kane 提出,通过近邻效应将 s 波超导体的能隙引入到拓扑绝缘体,可以诱导出拓扑超导电性。在实验上,我们也回顾了一些不同体系中的拓扑超导近邻效应的研究进展。文章的第一部分,我们介绍了一些异质结,包括:三维拓扑绝缘体 Bi2Se3和 Bi2Se3 与 s 波超导体NbSe2 以及 d 波超导体 Bi2Sr2CaCu2O8+δ 的异质结,拓扑绝缘体 Sn1−xPbxTe 与 Pb 的异质结,二维拓扑绝缘体 WTe2 与NbSe2 的异质结。此外,还介绍了 TiBiSe2 在 Pb 上的拓扑绝缘近邻效应。另一部分中,我们对基于拓扑绝缘体的约瑟夫森结进行了回顾,包括著名的基于 Fu-Kane 体系的拓扑绝缘体约瑟夫森结,以及基于约瑟夫森结的超导量子干涉器件。  相似文献   

7.
Superconducting quantum circuits based on Josephson junctions have made rapid progress in demonstrating quantum behavior and scalability. However, the future prospects ultimately depend upon the intrinsic coherence of Josephson junctions, and whether superconducting qubits can be adequately isolated from their environment. We introduce a new architecture for superconducting quantum circuits employing a three-dimensional resonator that suppresses qubit decoherence while maintaining sufficient coupling to the control signal. With the new architecture, we demonstrate that Josephson junction qubits are highly coherent, with T2 ~ 10 to 20 μs without the use of spin echo, and highly stable, showing no evidence for 1/f critical current noise. These results suggest that the overall quality of Josephson junctions in these qubits will allow error rates of a few 10(-4), approaching the error correction threshold.  相似文献   

8.
Quantum effects in the dynamics of the Josephson phase difference in Josephson junctions with large electron transparency D are studied in the adiabatic regime, when the characteristic charging energyEC of the junction is much smaller than the superconducting energy gap Δ. In isolated junctions, quantum phase fluctuations are large and manifest themselves as Coulomb blockade of Cooper pair tunneling. The amplitude of the Coulomb blockade oscillations is calculated for single-mode junctions with arbitrary D. In particular, it is shown that the chiral anomaly completely suppresses Coulomb blockade in ballistic junctions with D =  1, and the suppression process at D   1 can be described as the Landau–Zener transition in imaginary time. In the regime when quantum phase fluctuations are small, they lead to quantum decay of supercurrent states due to macroscopic quantum tunneling of phase through the Josephson potential barrier. The decay rate is found in the nearly-ballistic junctions.  相似文献   

9.
MgO衬底上的YBa2Cu3O7-δ(YBCO)台阶边沿型约瑟夫森结(台阶结)在高灵敏度高温超导量子干涉器(superconducting quantum interference device,SQUID)等超导器件研制方面具有重要的应用价值和前景.本文对此类YBCO台阶结的制备和特性进行了研究.首先利用离子束刻蚀技术和两步刻蚀法在MgO(100)衬底上制备陡度合适、边沿整齐的台阶,然后利用脉冲激光沉积法在衬底上生长YBCO超导薄膜,进而利用紫外光刻制备出YBCO台阶结.在结样品的电阻-温度转变曲线中,观测到低于超导转变温度时的电阻拖尾现象,与约瑟夫森结的热激活相位滑移理论一致.伏安特性曲线测量表明结的行为符合电阻分路结模型,在超导转变温度TC附近结的约瑟夫森临界电流密度TC随温度T呈现出(TC-T)^2的变化规律,77 K时JC值为1.4×10^5 A/cm^2.利用制备的台阶结,初步制备了YBCO射频高温超导SQUID,器件测试观察到良好的三角波电压调制曲线,温度77 K、频率1 kHz时的磁通噪声为250μΦ0/Hz^1/2.本文结果为进一步利用MgO衬底YBCO台阶结研制高性能的高温超导SQUID等超导器件奠定了基础.  相似文献   

10.
The emergence of superconductivity-induced phase-controlled forces in the (10(-2)-10(-1)) nN range and of magnetization oscillations in nanowire junctions is discussed. A giant magnetic response to applied weak magnetic fields is predicted in the ballistic Josephson junction formed by a superconducting tip and a surface, bridged by a normal-metal nanowire where Andreev states form.  相似文献   

11.
We have investigated electrical transport in a diffusive multiwalled carbon nanotube contacted using superconducting leads made of an Al/Ti sandwich structure. We find proximity-induced superconductivity with measured critical currents up to I(cm)=1.3 nA, tunable by the gate voltage down to 10 pA. The supercurrent branch displays a finite zero bias resistance which varies as R(0) proportional to I(cm){-alpha} with alpha=0.74. Using IV characteristics of junctions with phase diffusion, a good agreement is obtained with the Josephson coupling energy in the long, diffusive junction model of A. D. Zaikin and G. F. Zharkov [Sov. J. Low Temp. Phys. 7, 184 (1981)].  相似文献   

12.
Nanohybrid superconducting junctions using antimony telluride (Sb2Te3) topological insulator nanoribbons and Nb superconducting electrodes are fabricated using electron beam lithography and magnetron sputtering. The effects of bias current, temperature, and magnetic field on the transport properties of the junctions in a four-terminal measurement configuration are investigated. Two features are observed. First, the formation of a Josephson weak-link junction. The junction is formed by proximity-induced areas in the nanoribbon right underneath the inner Nb electrodes which are connected by the few tens of nanometers short Sb2Te3 bridge. At 0.5 K a critical current of 0.15 µA is observed. The decrease of the supercurrent with temperature is explained in the framework of a diffusive junction. Furthermore, the Josephson supercurrent is found to decrease monotonously with the magnetic field indicating that the structure is in the small-junction limit. As a second feature, a transition is also observed in the differential resistance at larger bias currents and larger magnetic fields, which is attributed to the suppression of the proximity-induced superconductive state in the nanoribbon area underneath the Nb electrodes.  相似文献   

13.
We demonstrate experimentally the manipulation of supercurrent in Al-AlOx-Ti Josephson tunnel junctions by injecting quasiparticles in a Ti island from two additional tunnel-coupled Al superconducting reservoirs. Both supercurrent enhancement and quenching with respect to equilibrium are achieved. We demonstrate cooling of the Ti line by quasiparticle injection from the normal state deep into the superconducting phase. A model based on heat transport and the nonmonotonic current-voltage characteristic of a Josephson junction satisfactorily accounts for our findings.  相似文献   

14.
研究了嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结阵列毫米波相干辐射的实验结果.相干辐射是通过约瑟夫森结阵列与基片(作为一个介质谐振器)和Fabry-Perot(FP)谐振器的共同作用实现的.由166个高温超导双晶约瑟夫森结串联阵列在77 K温度下产生的相干辐射,辐射峰的中心频率为75.84 GHz,功率大约为10 pW. 关键词: 高温超导薄膜 Fabry-Perot谐振腔 约瑟夫森结 毫米波辐射  相似文献   

15.
We suggest a system in which the amplitude of macroscopic flux tunneling can be modulated via the Aharonov-Casher effect. The system is an rf SQUID with the Josephson junction replaced by a Bloch transistor--two junctions separated by a small superconducting island on which the charge can be induced by an external gate voltage. When the Josephson coupling energies of the junctions are equal and the induced charge is q = e, destructive interference between tunneling paths brings the flux tunneling rate to zero. The device may also be useful as a qubit for quantum computation.  相似文献   

16.
Control of the critical current in a superconductor/two-dimensional electron gas Josephson junction by means of an injection current is reported. The control mechanism is explained by a theoretical model, which takes ballistic transport across the junction and diffusive transport through the semiconductor wire structure into account. Measurements on a Nb-AlGaSb/InAs-Nb junction show that the strong suppression of the critical current can, in principle, be explained by the theoretical model. Deviations are due to the nonlinear current–voltage characteristics of the superconductor/two-dimensional electron gas interface and the two-dimensionality of the supercurrent transport.  相似文献   

17.
Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.  相似文献   

18.
We observe a subharmonic gap structure (SGS) and the Josephson effect in superconducting scanning tunneling microscope junctions with resistances below 100 kΩ. The magnitude of the n=2 SGS is shown to scale with the square of the junction normal state conductance, in agreement with theory. We show by analyzing the Josephson effect in these junctions that the superconducting phase dynamics are strongly affected by thermal fluctuations. We estimate the linewidth of the Josephson oscillations due to phase fluctuations, a quantity that may be important in modern theories of the subgap structure. While phase fluctuations may smear the SGS current onsets, we conclude that the sharpness of these onsets in our data is not limited by fluctuations.  相似文献   

19.
We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50-300 k Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltage. In the presence of microwave fields ( f = 15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory.  相似文献   

20.
约瑟夫森结是一种利用超导材料制备的新型量子电子器件,它的一个显著特性是具有高度的非线性,因而会出现明显的混沌行为。约瑟夫森结与阵列的混沌行为具有重要的研究和应用价值,受到了广泛的关注。文中对约瑟夫森结与阵列的非线性混沌行为及研究进展做一些介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号