首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
化石燃料的大量使用使人类面临前所未有的能源枯竭与环境污染问题,因此,寻求和发展可持续能源与技术迫在眉睫.光催化过程利用催化剂捕获光子将太阳能转化成各种能源与化学品,是一种极具潜力的绿色可持续技术.理性设计高效的捕光材料与催化体系是实现高效太阳能利用与转化的有效策略.而光催化剂的效率主要受制于电荷分离效率低、氧化还原能力不足等缺陷.在众多提高光催化效率的策略中,异质结光催化剂的构建是解决以上问题的有效途径.与传统的Ⅱ型异质结光催化剂相比,阶梯(S)型异质结在氧化型和还原型半导体之间构筑了内建电场,动力学上加速了光生载流子的分离、迁移并且保留催化剂最高的氧化还原能力,成为一类极具应用潜力的异质结催化剂.本文通过简单的水热法将Ag3PO4纳米颗粒原位生长在TiO2纤维表面,制备了0D/1D Ag3PO4/TiO2S型异质结.两者之间通过构筑紧密的界面接触有效降低了光生载流子的传输障碍,促进了界面电荷转移,从而在光催化产氧和光分解罗丹明B、苯酚和盐酸四环素方面表现出优异的活性和光稳定性...  相似文献   

2.
Khakemin Khan  徐丽粉  石明  曲江珊  陶晓萍  冯兆池  李灿  李仁贵 《催化学报》2021,42(6):1004-1012,中插32-中插36
利用人工光合成将太阳能转化为化学燃料是太阳能利用的重要途径,具有广阔的应用前景,其中,太阳能光催化分解水制氢是最为关键的反应之一.但是,大多数半导体光催化材料面临着光生电荷分离困难和表面催化反应速率慢等挑战.本文以具有可见光响应的半导体光催化剂Cd0.9Zn0.1S(CZS)纳米棒为研究模型,利用水热法成功在其表面上均...  相似文献   

3.
氢气是一种清洁能源,利用太阳能进行光催化分解水产氢,因为节能和环保,吸引了国内外学者的广泛关注.但是,半导体光催化材料普遍存在可见光吸收范围窄和光生载流子易复合等问题,导致光催化效率不高.半导体耦合是拓展光吸收范围,并促进光生载流子空间分离的有效策略之一.能带相互交错的两种半导体复合,可以形成传统的Ⅱ型异质结,但是这种耦合方式削弱了光生电荷的氧化还原能力.相对传统Ⅱ型异质结光催化材料的不足,余家国教授提出了S型异质结的概念,它通常由两种n型半导体光催化剂组成,其中能带位置较高的为还原型光催化剂(RP),能带位置较低的是氧化型光催化剂(OP).形成S型异质结的关键是接触界面处存在由RP指向OP的内电场.受内建电场的驱动,S型异质结界面电子和空穴的流向与传统Ⅱ型光催化剂完全不同.由于保留了光生电子和空穴具有较强的还原和氧化能力,S型异质结在热力学上更有利于光催化氧化与还原反应.本文以硫代乙酰胺为硫源,采用低温溶剂热法(乙二醇中110℃反应2 h),在氧化型光催化剂(1D的WO3纳米棒)表面原位生长还原型光催化剂(2D的ZnIn2S4  相似文献   

4.
利用人工光合成将太阳能转化为化学燃料是太阳能利用的重要途径,具有广阔的应用前景,其中,太阳能光催化分解水制氢是最为关键的反应之一.但是,大多数半导体光催化材料面临着光生电荷分离困难和表面催化反应速率慢等挑战.本文以具有可见光响应的半导体光催化剂Cd_(0.9)Zn_(0.1)S(CZS)纳米棒为研究模型,利用水热法成功在其表面上均匀地组装氧化钴物种(CoO_x),构建了多级异质结构CZS@CoO_x.扫描电子显微镜和透射电子显微镜显示,表面组装的CoO_x物种均匀地覆盖在CZS纳米棒的整个表面上,形成了有序的CZS@CoO_x核壳多级异质结构.高分辨率透射电子显微镜进一步确认了氧化钴晶格间距与六方CZS的(002)晶面高度匹配,利于光生电荷在界面的分离和转移.稳态荧光光谱测试表明,与物理混合的样本相比,CZS@CoO_x多级异质结构表现出明显降低的荧光强度,说明多级异质结构能有效促进光生电子-空穴对的分离.时间分辨荧光光谱结果显示,CZS@CoO_x多级异质结构的平均光生电荷寿命明显增长,进一步确认了多级异质结构对光生电荷分离的作用.此外,电化学开路电位测量显示,增强的开路电压响应归因于多级异质结构CZS@CoO_x中致密的界面接触.电化学阻抗谱进一步确认,与没有形成致密界面结构的CZS-CoO_x和CZS/CoO_x相比,多级异质结构CZS@CoO_x的电荷转移电阻大幅度降低,从而确保了更快的界面电荷分离和转移.最后对CZS@CoO_x多级异质结构的光催化产氢活性进行了评价,发现其光催化产氢的性能远高于贵金属Pt/CZS光催化剂;进一步测量了CZS@CoO_x的表观量子效率,在420 nm处光催化产氢的表观量子效率为20%.此外,在多级异质结构CZS@CoO_x上进一步引入Pt助催化剂,可将表观量子效率进一步提升至37%.本文报道的这一简易可行的表面组装构建多级异质结构的策略有望在太阳能光催化领域发挥重要作用.  相似文献   

5.
随着不可再生能源的大量消耗,能源短缺成为人类社会面临的重大挑战。在众多新能源制备技术中,光催化分解水制氢技术只需丰富的太阳能作为驱动力就可以实现分解水制氢,且制氢条件温和、绿色无污染,被认为是解决当前能源短缺危机的有效技术之一。光催化制氢技术的核心是光催化剂,因此发展高效稳定的光催化剂至关重要。然而,单组分光催化剂由于空穴-电子复合速度快、氧化还原能力有限、太阳能利用效率低等原因,通常只能呈现出有限的光催化分解水制氢活性。为此,科研人员做了大量改性研究,其中常见的改性策略有元素掺杂、助催化剂修饰、构建异质结等。通常,元素掺杂、助催化剂修饰等改性手段可以在一定程度上提高光催化剂的制氢活性,但并不能有效解决单相光催化剂的缺陷,导致其改性效果受到制约。然而,在两个或多个半导体之间构建异质结可以有效解决上述单组分光催化剂的缺陷。相较于当前流行的传统II型异质结和Z-型异质结,S-型异质结的电荷转移机制更为合理,受到科学家们的广泛关注与应用。因此,本文首先对S-型异质结光催化体系的发展背景进行介绍,包括传统II型异质结、全固态Z-型异质结和液相Z-型异质结光催化系统。随后对S-型异质结光催化机理...  相似文献   

6.
光催化技术不仅可以将太阳能转化为化学能,还可以直接降解和矿化有机污染物的特性,因而成为最具吸引力和前景的技术之一,被广泛应用于解决环境和能源问题.但是目前,太阳能燃料的最高转化效率为5%,无法满足商业化要求(≥10%).各种光催化材料被探索研究以进一步提高光催化效率.但目前广泛使用的材料都有不同的缺点.比如最常用的金属氧化物(TiO2)由于禁带较宽,仅能利用太阳光中的紫外光,限制了其对光的使用效率;贵金属化合物虽性能优异但成本较高,不宜规模化应用;硫化物或非金属单质一般容易发生光腐蚀,稳定性较差;非金属化合物或聚合物中光生电子和空穴复合率高,活性较低.最近几年,类石墨相氮化碳(g-C_3N_4)以其优异的热稳定性以及化学稳定性,能带结构易调控和前驱体价格低廉等特点而成为目前研究的热点,在光解水制氢产氧、污染物降解、光催化CO_2还原、抗菌和有机官能团选择性转换等领域受到广泛的应用.然而,传统热缩聚法合成的g-C_3N_4光催化剂比表面积小、电荷复合率高、禁带宽度稍微大、光生载流子传输慢,抑制了其光催化活性.为了进一步提高g-C_3N_4的光催化活性,出现了多种改性方法.纳米异质结由于能展现出单组分纳米材料或体相异质结所不具备的独特性质,更能促进光生电子和空穴快速转移,提供更多的光生电子或使光生电子具有更强的还原性而成为研究的热点.从2009年以来,基于g-C_3N_4的异质结结构以其优异的光催化性能吸引了世界各国科学家的关注.本文综述了过渡金属硫化物(TMS)/g-C_3N_4纳米复合材料的最近研究进展,包括:(1)纯g-C_3N_4的制备,(2)g-C_3N_4的改性方法,(3)TMS/g-C_3N_4异质结光催化剂的设计原则,以及(4)能量转换方面的应用.并从以下几个方面对金属硫化物异质结体系的特性和转移机理进行了介绍:(1) I-型异质结,(2)Ⅱ-型异质结,(3) p-n型异质结,(4)肖特基异质结和(5) Z-型异质结.此外,还系统地介绍了g-C_3N_4基异质结光催化剂在光解水、CO_2还原、固氮和污染物降解等方面的应用.最后,本文分析了目前g-C_3N_4光催化剂异质结领域面临的问题和挑战,展望了未来的发展趋势.  相似文献   

7.
开发低成本的半导体光催化剂以实现可见光下高效、持久的光催化分解水产氢是一个非常具有挑战性的课题.近年来,具有高产氢活性的CdS光催化剂引起了人们的研究兴趣.但是光生电子-空穴对快速复合、反应活性位点不足以及严重的光腐蚀等问题,严重地制约了CdS在光催化领域的实际应用.构建S型异质结和负载助催化剂被认为是促进光生电子空穴分离和加速产氢动力学的有效策略.本文通过在低成本的WO3和Ti3C2MXene(MX)纳米片上生长CdS纳米片,设计并构建了具有二维耦合界面的2D/2D/2D层状异质结光催化剂,以实现高效的可见光光催化分解水产氢.首先通过水热煅烧和刻蚀的方法分别制备了WO3和MX纳米片,然后以乙酸镉和硫脲为原料在乙二胺溶剂中通过水热法合成了MX-CdS/WO3层状异质结光催化剂.在可见光下,以乳酸为牺牲剂测试了光催化剂的产氢活性且经过4次连续的循环反应,MX-CdS/WO3体系展现出良好的活性及稳定性.在可见光的照射下,MX-CdS/WO3层状异质结光催化剂最高的可见光光催化分解水产氢速率达到了27.5 mmol/g/h,是纯CdS纳米片的11倍.与此同时,在450 nm的光照下,表观量子效率达到了12.0%.为了深入探讨其高效产氢机理,通过X射线衍射、X射线光电子能谱、原子力显微镜、透射电镜、高分辨电子显微镜等对MX-CdS/WO3体系的组成和结构进行分析.结果表明,实验成功地合成了CdS,WO3和MX三种纳米片及其复合材料.通过紫外-可见漫反射光谱研究了样品材料的光吸收能力.通过表面光电压、稳态及瞬态荧光光谱等研究了材料的电荷载流子复合和转移行为,发现MX-CdS/WO3的光生电子空穴对相比与纯CdS或者二元复合材料具有更高的分离效率.UPS和ESR等表征结果说明,材料内部电场的方向和在光照条件下光生载流子的迁移方向,从而证实了S型异质结和欧姆结的成功构建.综上,在MX-CdS/WO3光催化剂体系中,S型异质结形成较强的界面电场能够有效促进CdS纳米片与WO3纳米片之间光生电子-空穴对的分离.同时,二维Ti3C2MXene纳米片作为辅助催化剂,通过与CdS/WO3纳米片构建欧姆结,进而提供大量的电子转移途径和更多的析氢反应活性位点,使得CdS光催化剂的光催化活性和稳定性得到了很大的提升.通过构建S型内建电场、欧姆结和2D/2D界面可以协同提高CdS纳米片的光催化性能,从而加速光生电子在异质结中的分离和利用.本文所采用基于S型异质结与欧姆结基助催化剂之间的耦合策略可以作为一种通用策略扩展到其它传统半导体光催化剂的改性中,从而推进高效光催化产氢材料的有效合成.  相似文献   

8.
长期以来,陆地、大气和海洋之间的碳循环维持了大自然碳平衡.随着密集人类活动和高度工业发展,碳燃料、碳化学品和碳材料广泛应用于各个领域,导致碳排放过量,碳平衡已被严重破坏,碳污染已成为一个严峻问题.例如,持久性有机污染物和挥发性有机化合物过量排放到环境中,威胁着人类的健康和生态平衡.人们陆续开发出各种先进的环境技术,如微生物分解,去除空气和水中的碳基污染物,将有毒有害的有机化合物转化为无害CO2.但是,CO2本身是大气中的主要温室气体,它在大气中的浓度早超过了天然碳循环所能维持的环境自洁净能力.基于先进催化技术建立人工碳循环,将有机污染物矿化生成的CO2进一步转化为有价值的有机化学品(如太阳能燃料)是一种理想的低碳方法.光合作用是自然碳循环中核心过程之一,是降低大气中CO2浓度的关键.受到光合作用启发,科学家们积极开发人工光合成技术推动CO2资源化.人工光合成技术本质上基于半导体光催化过程.半导体光催化过程具有双重作用.一方面,基于有氧光催化氧化过程,有机污染物可以矿化生成无毒CO2.另一方面,基于缺氧光催化还原过程,CO2可以转化为碳氢化合物太阳能燃料.理论上,结合上述两个过程,为建立人工碳循环奠定基础,但是,至今很少有人成功建立有氧氧化-无氧还原串联光催化工艺,实现人工碳循环.难点在于有机污染物的有氧氧化反应和CO2的无氧还原反应的操作条件与反应机制是完全不同的,目前缺乏同时适用于上述两种反应的双功能光催化剂.本文成功构建了具有双功能的g-C3N4/Bi/BiVO4三元复合光催化剂,它不仅在降解有机污染物方面表现出优异的有氧光催化氧化性能(以降解染料罗丹明B为例),而且还表现出优异的缺氧CO2光催化还原性能.此外,基于“一锅法”厌氧耦合氧化-还原反应,g-C3N4/Bi/BiVO4三元复合光催化剂成功实现同步罗丹明B降解与太阳能燃料生成,构建了从毒害有机污染物到高品质太阳燃料的碳循环.结合牺牲剂实验分析与密度泛函理论理论计算,作者提出g-C3N4/Bi/BiVO4复合光催化剂的双功能性与g-C3N4与BiVO4界面内建S-型复合异质结有关.S-型复合异质结既促进界面电荷转移与分离,又维持了最佳电荷氧化还原电位.此外,S型g-C3N4/Bi/BiVO4复合光催化剂中原位生成的具有等离子体效应的Bi纳米颗粒具有双重作用,既促进界面电荷定向转移,又促进可见光吸收.本文开发的新型双功能S-型g-C3N4/Bi/BiVO4复合光催化剂系统为进一步开发集成式有氧-缺氧光催化碳循环反应系统奠定基础.  相似文献   

9.
随着现代经济和工业的快速发展,传统化石能源的过度开发和消耗造成了日益严重的环境污染和能源危机,极大地威胁着我们的健康和生活。我们需要开发新的可持续技术来解决日益恶化的环境和能源问题。太阳能作为一种绿色、可持续的清洁能源,在过去几十年中受到了广泛的关注。因此,开发和利用太阳能对解决当前面临的问题具有重要意义。半导体光催化技术是一种太阳能驱动的半导体材料表面催化反应过程,可利用太阳能并将其转化为其他能源,用于进一步的能量存储和应用。目前,制备高效稳定的光催化剂仍然是一个巨大的挑战。最近,为了解决传统异质结光催化剂电荷转移过程中的缺点和不足,一种新型梯形(S型)异质结概念被首次提出。S型异质结不仅有效地解决了电荷转移问题,实现了载流子的快速分离,而且保留了光催化体系最强的氧化还原能力,提高其光催化性能。到目前为止,各种S型异质结已被开发并应用于太阳能转化可用化学燃料领域以减少化石燃料的使用。此外,S型异质结也可用于降解污染物,以减少化石燃料的消耗所造成对环境恶化的影响。过氧化氢(H2O2)作为一种有效、多用途、绿色的氧化剂,已应用于诸多领域,包括污...  相似文献   

10.
构建高效、稳定的异质结光催化剂体系是实现太阳能驱动分解水制氢的有效途径。本研究通过物理混合法将Mn0.2Cd0.8S纳米棒与CoAl LDH纳米片进行耦合,成功制备出一种新型的Mn0.2Cd0.8S@CoAl LDH (MCCA) S型异质结光催化剂。光致发光光谱和光电流测试结果表明,该异质结在内建电场的作用下可以有效地加快Mn0.2Cd0.8S和CoAl LDH界面间光生载流子的分离和电子转移。关键的是,CoAl LDH的引入有效地抑制了光生电子与空穴的复合,从而提高了Mn0.2Cd0.8S的光催化产氢活性。最佳CoAl LDH负载量的MCCA-3在5 h内的产氢量为1177.9 μmol。与单独使用纯Mn0.2Cd0.8S纳米棒和CoAl LDH纳米片相比,这是一个显著的改进。本研究为合理设计用于光催化制氢的S型异质结光催化剂提供了一条简单有效的途径。  相似文献   

11.
随着抗生素废水在水体和陆地生态系统的肆意排放,抗生素污染已成为当今世界重要的环境问题.由于抗生素废水具有生物毒性大、含有抑菌物质等特点,传统的物理吸附法、生物处理法在处理这类难降解有毒有机废水,尤其是含残留微量抗生素的废水时效果较差.为了解决抗生素废水所引起的环境危机,人们尝试了许多方法.近年来,光催化技术作为一种适用范围广、反应速率快、氧化能力强、无污染或少污染的处理抗生素废水的方法受到人们广泛关注.半导体材料在太阳光照射下,可产生具有较强氧化作用的羟基或超氧自由基,从而起到降解抗生素分子的作用.然而,传统的光催化处理抗生素废水光催化剂主要局限于TiO_2半导体,它存在太阳光谱吸收范围窄、光生电荷复合率高等问题,严重制约其工业化应用.因此,人们一直致力于开发高效、稳定的可见光响应型光催化剂.本文根据光催化技术的基本原理,综述了目前几种基于不同策略设计开发可见光光催化降解抗生素废水的新型光催化剂的方法.离子掺杂改性宽带隙半导体是开发高效可见光光催化剂的常用方法.通过过渡金属离子或非金属离子掺杂改性,可以使传统的TiO_2和SrTiO_3等紫外光催化剂吸收带边发生红移,响应可见光,从而显著提高可见光下光催化剂降解抗生素的效率.然而必须注意的是,掺杂的金属离子本身会成为电子-空穴复合点位,因此,过量的掺杂金属或非金属离子可能会降低其光催化活性.考虑到单一半导体材料在光催化反应中存在的光生载流子容易复合、可见光利用率低等问题,构建异质结构复合光催化体系,通过不同半导体之间的协同作用,促进光生电荷的分离与转移,是获得高效光催化体系的重要策略之一.典型的Ⅱ型异质结光催化剂,当不同的半导体紧密接触时,由于异质结两侧能带等性质的不同会形成空间电势差,从而有利于光生载流子的分离,光催化效率提高.作为一种复合光催化体系,表面等离子体共振增强型光催化体系近年来引起了国内外学者的广泛关注.Ag,Au和Pd金属纳米粒子在吸收光后其表面发生等离共振,随后等离子体发生衰减,把聚集的能量转移到半导体材料的导带.这个过程产生的高能电子(热电子),逃离贵金属纳米粒子而被与其接触的半导体收集,从而形成金属-半导体肖特基接触.形成的肖特基结可以显著提高光催化的光生电荷分离效率,从而提高光催化降解抗生素活性.目前,与传统物化法/生化法相比,光催化技术用于处理抗生素废水具有十分明显的技术优势,在水处理方面有着很好的应用前景.针对目前光催化体系存在的光生载流子容易复合的巨大挑战,今后,构筑高效复合光催化体系(例如石墨烯基二维复合光催化剂在光生电荷分离、太阳光利用率等方面已展现出较好的综合性能)将成为高效光催化降解抗生素催化剂研发的重要方向之一.  相似文献   

12.
可见光光催化降解抗生素研究进展   总被引:2,自引:0,他引:2  
李娣  施伟东 《催化学报》2016,(6):792-799
随着抗生素废水在水体和陆地生态系统的肆意排放,抗生素污染已成为当今世界重要的环境问题。由于抗生素废水具有生物毒性大、含有抑菌物质等特点,传统的物理吸附法、生物处理法在处理这类难降解有毒有机废水,尤其是含残留微量抗生素的废水时效果较差。为了解决抗生素废水所引起的环境危机,人们尝试了许多方法。近年来,光催化技术作为一种适用范围广、反应速率快、氧化能力强、无污染或少污染的处理抗生素废水的方法受到人们广泛关注。半导体材料在太阳光照射下,可产生具有较强氧化作用的羟基或超氧自由基,从而起到降解抗生素分子的作用。然而,传统的光催化处理抗生素废水光催化剂主要局限于 TiO2半导体,它存在太阳光谱吸收范围窄、光生电荷复合率高等问题,严重制约其工业化应用。因此,人们一直致力于开发高效、稳定的可见光响应型光催化剂。本文根据光催化技术的基本原理,综述了目前几种基于不同策略设计开发可见光光催化降解抗生素废水的新型光催化剂的方法。
  离子掺杂改性宽带隙半导体是开发高效可见光光催化剂的常用方法。通过过渡金属离子或非金属离子掺杂改性,可以使传统的 TiO2和SrTiO3等紫外光催化剂吸收带边发生红移,响应可见光,从而显著提高可见光下光催化剂降解抗生素的效率。然而必须注意的是,掺杂的金属离子本身会成为电子-空穴复合点位,因此,过量的掺杂金属或非金属离子可能会降低其光催化活性。考虑到单一半导体材料在光催化反应中存在的光生载流子容易复合、可见光利用率低等问题,构建异质结构复合光催化体系,通过不同半导体之间的协同作用,促进光生电荷的分离与转移,是获得高效光催化体系的重要策略之一。典型的 II型异质结光催化剂,当不同的半导体紧密接触时,由于异质结两侧能带等性质的不同会形成空间电势差,从而有利于光生载流子的分离,光催化效率提高。作为一种复合光催化体系,表面等离子体共振增强型光催化体系近年来引起了国内外学者的广泛关注。 Ag, Au和Pd金属纳米粒子在吸收光后其表面发生等离共振,随后等离子体发生衰减,把聚集的能量转移到半导体材料的导带。这个过程产生的高能电子(热电子),逃离贵金属纳米粒子而被与其接触的半导体收集,从而形成金属-半导体肖特基接触。形成的肖特基结可以显著提高光催化的光生电荷分离效率,从而提高光催化降解抗生素活性。
  目前,与传统物化法/生化法相比,光催化技术用于处理抗生素废水具有十分明显的技术优势,在水处理方面有着很好的应用前景。针对目前光催化体系存在的光生载流子容易复合的巨大挑战,今后,构筑高效复合光催化体系(例如石墨烯基二维复合光催化剂在光生电荷分离、太阳光利用率等方面已展现出较好的综合性能)将成为高效光催化降解抗生素催化剂研发的重要方向之一。  相似文献   

13.
光催化材料和技术可合理利用太阳能,完成能量转化与存储,并实现环境治理和双碳目标.光催化剂活性是影响其效率的关键,因此光催化剂的合理设计成为研究热点.为抑制光生电子和空穴的快速复合并拓展单一光催化剂的光吸收范围,可通过构建异质结特别是新兴的梯型(S型异质结)的策略.在保有体系最大氧化还原能力的同时,实现光生电荷的有效分离.可通过原位光照X射线光电子能谱和原位光照原子力显微镜等技术研究梯型异质结的电荷转移机制,然而,目前尚缺少对于异质结界面处瞬态动力学的深入研究.近期,中国地质大学(武汉)余家国教授、张留洋教授与湖北文理学院梁桂杰教授合作,通过原位生长策略,在芘基共轭聚合物(PDB)表面原位生长硫化镉(Cd S)纳米晶体,制备了一系列硫化镉/聚合物梯型异质结(CPDB),并系统地研究了异质结界面处的稳态电荷分布以及瞬态电荷转移动力学.密度泛函理论计算和开尔文探针测试结果表明,暗态下电子由PDB向Cd S转移,并在界面处形成内建电场和能带弯曲.原位光照X射线光电子能谱表明,在内建电场和能带弯曲的驱动下, Cd S的光生电子与PDB的光生空穴复合,而PDB的光生电子与Cd S的光生空穴得以保留...  相似文献   

14.
半导体光催化剂在环境处理和能量转换方面有着巨大的应用潜力,但由于电子-空穴对的复合作用,半导体光催化剂的光催化性能较低.相结的存在是提高电子-空穴分离效率及光催化活性的有效途径,对相结设计的深入研究是提高电荷转移性能和效率的有效手段.因此,相结光催化技术的发展,对于设计一个良好的相结和了解电子-空穴分离机理具有重要的意义.通常,相结的构建需要特殊的制备技术以及良好的晶格匹配.纳米异质结材料结合快速转移载流子的特点,具有小尺寸效应和颗粒限域效应的优点,且具有单组分纳米材料或体相异质结不具有的独特特性.纳米晶异质结可以促进光生电子的快速转移,根据两种半导体带的相对位置,异质结可分为I型、II型和III型,根据不同的电子转移途径可分为p-n型和Z-型.当p型半导体(空穴为多数电荷载流子)或n型半导体(电子为多数电荷载流子)密切接触时,由于能带和其它性质的差异,会形成结,并在结的两侧形成空间电位差.空间电位差的存在可以使产生光生载流子从一个半导体能级注入到另一个半导体能级,从而促进电子和空穴的分离,提高光催化效率.以p-n结为例,当它们在这两个区域共存时,它们的边界层形成一个薄的p-n结.由于p型区空穴浓度高, n型区电子浓度高,结处存在电子和空穴的扩散现象.在p-n结边界附近形成空间电荷区,从而在结内形成强的局域电场.在结的局部电场作用下,电荷在结两端累积形成电位差,后者作为驱动力可以有效地分离光生电荷.近年来,人们在纳米相结的设计和制备上做了大量工作以提高光催化剂活性.虽然异质结具有优良的性能,但异质结的成分和元素并不是单一的,它的形成也不是一步反应.首先,需要分别合成异质结的两个成分,反应复杂,耗时,不环保.与异质结相比,同一材料通过相变构建的结也能实现光生载流子的高效分离.同质化不需要引入其它要素,因此引起了大量关注.在相变过程中,大多数均由不同晶相的半导体形成,如锐钛矿型/金红石型TiO_2,α-β相Ga_2O_3或六方/立方Cd S.由于化学成分相同,半导体材料的能带结构不易改变.因此,对同晶材料的同质结研究较少.虽然已有几篇关于异质相结的综述论文,但通过对外部诱导相变法制备相结的回顾,仍可为读者提供有关该领域研究进展的新的认识.本文对低成本、高效率的相变思路在光催化领域中的应用进行了简要的总结,并对其在光催化领域中的应用前景进行了展望.  相似文献   

15.
太阳能光催化技术广泛应用于处理环境污水中.Z型光催化剂体系具有较强的氧化还原能力,降低半导体的带隙,且使导带更负,价带更正,有效拓宽光生电子-空穴空间距离,抑制其复合,大大提高了光催化剂的催化性能,因此,构筑直接的Z型光催化体系已成为光催化领域的研究热点之一.TiO_2具有较好的光催化性能和良好的化学稳定性,但其禁带较宽,只能被太阳光中约占4%的紫外光激发,对太阳光中约占50%的可见光不响应,且光生电子-空穴易复合.g-C_3N_4是非金属光催化剂,具有较好的光催化活性,可见光吸收非常强,但比表面积较小,光生电子-空穴易复合.还原氧化石墨烯(RGO)具有大的比表面积和优异的传输载流子能力,可显著提高光催化剂的比表面积,同时降低电子空穴复合效率,从而在一定程度上改善光催化剂性能.大量研究证实, TiO_2/g-C_3N_4/RGO三元异质结的光催化性能明显优于单组份TiO_2, g-C_3N_4和二元TiO_2/g-C_3N_4光催化剂,但现有制备工艺复杂且耗时,因此,简易地构筑具有高光催化性能的Z型TiO_2/g-C_3N_4/RGO三元异质结仍具有挑战性.本文采用简易的直接电纺法构筑了高光催化活性的Z型TiO_2/g-C_3N_4/RGO三元异质结光催化剂,通过调节尿素的用量成功制备了一系列不同形貌的TiO_2/g-C_3N_4/RGO三元异质结.并采用X-射线衍射、红外光谱、拉曼光谱、X射线光电子能谱、扫描电子显微镜、透射电子显微镜、紫外-可见漫反射吸收光谱、氮气吸附-脱附测试、光电化学测试和荧光光谱等技术对所制备样品的晶型、组成、形貌、光捕获能力、载流子分离能力、比表面积、光电流、阻抗、光降解性能以及羟基自由基的生成进行系统性测试.以罗丹明B为目标探针分子,考察了模拟太阳光下所制备的光催化剂的光催化活性,结果表明,尿素添加量为0.6g时,电纺构筑的TiO_2/g-C_3N_4/RGO三元异质结在60min具有99.1%的光催化降解效率,显著优于纯TiO_2, g-C_3N_4,二元TiO_2/g-C_3N_4以及制备的其它TiO_2/g-C_3N_4/RGO三元异质结光催化剂.基于光电化学测试、活性物种淬灭实验和荧光光谱分析测试羟基自由基等分析结果,提出了一个合理的Z型增强光催化活性机理.  相似文献   

16.
近年来,环境污染问题严重地威胁着人类的生存和健康.半导体光催化是一种绿色环保的治理环境污染技术,该技术实现大规模应用的关键在于构建高效的光催化剂.TaON因优异的光电性质、稳定的物理化学性质及适合的能带结构等优势,被广泛应用于光催化水裂解和有害污染物降解等领域.但光生载流子快速复合和比表面积小等问题严重制约了其大规模应用.近年来,人们发现构建新型S型异质结能有效促进光生电子和空穴分离,同时充分保存具有强氧化还原能力的电子和空穴,进而有效提升材料的光催化性能.因此,通过构建新型TaON S型异质结光催化材料有f望开发出高效的可见光光催化体系.本文采用静电纺丝-煅烧-氮化工艺制备出由纳米颗粒组成的多孔TaON纳米纤维,然后采用溶剂热法制得一系列富含氧空位的TaON/Bi2WO6 S型异质结纤维,并用于可见光照射下光催化降解抗生素和还原Cr6+.实验发现,富含氧空位的Bi2WO6二维纳米片均匀生长在TaON纳米纤维上形成了良好的1D/2D核壳结构,此异质结界面结构有利于界面间电荷的分...  相似文献   

17.
Z型异质结由于具有促进载流子分离能力和保持较高氧化还原能力的优点成为近几年光催化领域的研究热点之一.本文通过水热法制备了ZnO/CoO/CDs(碳点)的Z型异质结复合材料,有效的电荷传输促进了复合材料光催化产氢能力.同时CDs的引入调节了复合材料的形貌,提供更多的反应活性位点.产氢测试结果表明,ZnO/CoO/CDs Z型异质结复合材料的产氢量是ZnO/CDs单一光催化剂的2倍多,说明该材料在光催化分解水领域具有潜在应用前景.该工作思路为基于CDs的Z型异质结光催化剂材料的设计合成提供一定理论指导.  相似文献   

18.
太阳光驱动的光催化分解水产氢是利用太阳能解决当前能源危机和环境问题的理想策略.二氧化钛由于其稳定、环境友好和成本低等优点受到广泛研究,在光催化领域具有不可或缺的作用.然而,纯二氧化钛光催化剂具有光生电子-空穴复合率高、太阳能利用率低等缺点,使其在光催化产氢领域的应用受到限制.迄今为止,人们探索了多种改性策略来提高二氧化钛的光催化活性,如贵金属负载、金属或非金属元素掺杂、构建异质结等.通过复合两个具有合适能带排布的半导体来构建异质结可以大大提高光生载流子的分离,被认为是一种有效的解决方案.最近提出了一种新的S型异质结概念,以解释不同半导体异质界面载流子转移分离的问题.S型异质结是在传统Ⅱ型和Z型(液相Z型、全固态Z型、间接Z型、直接Z型)基础上提出的,但又扬长避短,优于传统Ⅱ型和Z型.通常,S型异质结是由功函数较小、费米能级较高的还原型半导体光催化剂和功函数较大、费米能级较低的氧化型半导体光催化剂构建而成.三氧化钨禁带宽度较小(2.4-2.8 eV),功函数较大,是典型的氧化型光催化剂,也是构建S型异质结的理想半导体光催化剂.根据S型电荷转移机制,三氧化钨/二氧化钛复合物在光辐照下,三氧化钨导带上相对无用的电子与二氧化钛价带上相对无用的空穴复合,二氧化钛导带上还原能力较强的电子和三氧化钨价带上氧化能力较强的空穴得以保留,从而在异质界面上实现了氧化还原能力较强的光生电子-空穴对的分离.同时,石墨烯作为一种蜂窝状碳原子二维材料,是理想的电子受体,在异质结光催化剂中能及时转移电子.而且,石墨烯具有较好的导热性和电子迁移率,光吸收强,比表面积大,可为光催化反应提供丰富的吸附和活性位点,已经被认为是一种重要催化剂载体和光电分解水产氢的有效共催化剂.本文采用简便的一步水热法制备石墨烯修饰的三氧化钨/二氧化钛S型异质结光催化剂.光催化产氢性能测试表明,三氧化钨/二氧化钛/石墨烯复合材料的光催化产氢速率显著提高(245.8μmol g^-1 h^-1),约为纯TiO2的3.5倍.高分辨透射电子显微镜、拉曼光谱和X射线光电子能谱结果证明了TiO2和WO3纳米颗粒的紧密接触,并成功负载在还原氧化石墨烯(rGO)上.X射线光电子能谱中Ti 2p结合能的增加证实TiO2和WO3之间强的相互作用和S型异质结的形成.此外,复合材料中的rGO大大拓展了复合物的光吸收范围(紫外-可见漫反射光谱),增强了光热转换效应,而且rGO与TiO2之间形成肖特基结,促进了TiO2导带电子的转移和分离.总之,WO3和TiO2的S型异质结与TiO2和rGO之间的肖特基异质结的协同效应抑制了相对有用的电子和空穴的复合,有利于氧化还原能力较强的载流子的分离和进一步转移,加速了表面产氢动力学,于是增强了三元复合光催化剂的光催化产氢活性.  相似文献   

19.
近年来,石墨型氮化碳(g-C_3N_4)作为一种n型半导体光催化剂材料,由于具有较好的热稳定性和化学稳定性,同时具有可调的带隙结构和优异的表面性质而备受人们关注.然而,传统的g-C_3N_4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷,制约着其光催化活性的进一步提高.因此,人们开发了多种技术对块体状g-C_3N_4材料进行改性,其中构建基于g-C_3N_4纳米薄片的异质结复合光催化材料被认为是强化g-C_3N_4载流子分离效率,进而提高其可见光催化活性的重要手段.BiOI作为一种窄带隙的p型半导体光催化剂,具有强的可见光吸收能力和较高的光催化活性,同时它与g-C_3N_4纳米薄片具有能级匹配的带隙结构.因此,基于以上两种半导体材料的特性,构建新型的BiOI/g-C_3N_4纳米片复合光催化剂材料不仅能够有效提高g-C_3N_4的可见光利用率,而且还可以在n型g-C_3N_4和p型BiOI界面间形成内建电场,极大促进光生电子-空穴对的分离与迁移效率.为此,本文通过简单的一步溶剂热法在g-C_3N_4纳米薄片表面原位生长BiOI纳米片材料,成功制备了新型的BiOI/g-C_3N_4纳米片复合光催化剂.利用X射线衍射仪(XRD),场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试.XRD,SEM和TEM结果显示,结晶完好的BiOI呈小片状均匀分散在g-C_3N_4纳米薄片表面;紫外漫反射光谱表明,纳米片复合材料的吸光性能较g-C_3N_4薄片有显著提升;瞬态光电流测试证明,复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中,BiOI/g-C_3N_4纳米片复合光催化剂显示出了优异的催化活性和稳定性,其光降解活性分别为纯BiOI和g-C_3N_4的34.89和1.72倍;自由基捕获实验发现,反应过程中的主要活性物种为超氧自由基(·O_2~-),即光生电子主导整个降解反应的发生.由此可见,强的可见光吸收能力和g-C_3N_4与BiOI界面处形成的内建电场协同促进了g-C_3N_4纳米薄片的电荷分离,进而显著提高了该复合材料的可见光催化降解活性.此外,本文初步验证了在BiOI/g-C_3N_4纳米片复合光催化体系内光生电荷是依据"双向转移"机制进行分离和迁移的,而非"Z型转移"机制.  相似文献   

20.
近年来, 石墨型氮化碳(g-C3N4)作为一种n型半导体光催化剂材料, 由于具有较好的热稳定性和化学稳定性, 同时具有可调的带隙结构和优异的表面性质而备受人们关注. 然而, 传统的g-C3N4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷, 制约着其光催化活性的进一步提高. 因此, 人们开发了多种技术对块体状g-C3N4材料进行改性,其中构建基于g-C3N4纳米薄片的异质结复合光催化材料被认为是强化g-C3N4载流子分离效率, 进而提高其可见光催化活性的重要手段. BiOI作为一种窄带隙的p型半导体光催化剂, 具有强的可见光吸收能力和较高的光催化活性, 同时它与g-C3N4纳米薄片具有能级匹配的带隙结构. 因此, 基于以上两种半导体材料的特性, 构建新型的BiOI/g-C3N4纳米片复合光催化剂材料不仅能够有效提高g-C3N4的可见光利用率, 而且还可以在n型g-C3N4和p型BiOI界面间形成内建电场, 极大促进光生电子-空穴对的分离与迁移效率.为此, 本文通过简单的一步溶剂热法在g-C3N4纳米薄片表面原位生长BiOI纳米片材料, 成功制备了新型的BiOI/g-C3N4纳米片复合光催化剂. 利用X射线衍射仪(XRD), 场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试. XRD, SEM和TEM结果显示, 结晶完好的BiOI呈小片状均匀分散在g-C3N4纳米薄片表面; 紫外漫反射光谱表明, 纳米片复合材料的吸光性能较g-C3N4薄片有显著提升; 瞬态光电流测试证明, 复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中, BiOI/g-C3N4纳米片复合光催化剂显示出了优异的催化活性和稳定性, 其光降解活性分别为纯BiOI和g-C3N4的34.89和1.72倍; 自由基捕获实验发现, 反应过程中的主要活性物种为超氧自由基(·O2-), 即光生电子主导整个降解反应的发生. 由此可见, 强的可见光吸收能力和g-C3N4与BiOI界面处形成的内建电场协同促进了g-C3N4纳米薄片的电荷分离, 进而显著提高了该复合材料的可见光催化降解活性. 此外, 本文初步验证了在BiOI/g-C3N4纳米片复合光催化体系内光生电荷是依据"双向转移"机制进行分离和迁移的, 而非"Z型转移"机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号