首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
光镊技术在生命科学研究中的应用   总被引:2,自引:2,他引:0  
介绍了光镊技术的工作原理和系统结构,论述了光镊技术工作特点,并结合具体的研究工作,阐述了光镊技术在单细胞、单分子等生命科学研究领域中的应用,最后给出了近年来光镊技术取得的进展和新的应用.  相似文献   

2.
由于光镊具有无直接接触、无损伤等诸多优点,且光镊产生的力在皮牛顿量级,正好落在生物大分子相互作用力的范围,所以光镊在生物大分子相互作用测量方面取得了越来越广泛的应用.文章详细介绍了光镊的出现、发展过程以及在生命科学中代表性应用结果.这些结果表明,将光镊应用在生命科学领域,可以揭示或证实许多以前不曾深刻了解的生物大分子的活动规律与机制.  相似文献   

3.
光镊技术利用光的力学特性实现对微纳尺度物体的操纵,是研究自然科学中微观物质的重要技术手段.光纤光镊因其结构紧凑、便于集成、操作灵活、适用范围广等优点,成为广泛应用于光学捕获和光学操纵的工具.本文综述了近年来光纤光镊在微观粒子光学操纵方面的研究进展,以单模光纤、多芯光纤、环形芯光纤、同轴双波导光纤为例介绍了光纤光镊对目标粒子的捕获、旋转、输运、振动等操作,列举了光纤光镊技术在温度传感、染料激光器、粒径测量和粒子输运等领域的应用,并介绍了光纤光镊技术应用于光的波粒二象性演示实验的教学成果.  相似文献   

4.
运用基于T矩阵算法的开源光镊计算工具包对可能影响光镊力的微粒尺寸、相对折射率以及光束模式进行了研究,计算结果表明,这三方面因素都会对光镊力产生显著影响,微粒直径与波长相等、相对折射率尽可能大时选择恰当的光束模式能够产生最佳的光镊捕获效果.  相似文献   

5.
光镊系统的组建及光阱效应的观察   总被引:1,自引:0,他引:1  
光镊是美国科学家Arthur Ashkin于1986年发明的,现被用来操控微小粒子和作为微小力的传感器.随着光镊技术的不断发展,光镊在生物大分子的操控和生物大分子生命过程中动力学研究方面发挥着巨大作用.本文介绍了光镊的工作原理,以及如何利用实验室现有条件,以较低成本搭建了一个简化的光镊系统,并观察了光镊对几种微小粒子的捕捉情况,证实了光阱有一定的作用范围,且其捕获能力随微粒尺寸增大而减小.  相似文献   

6.
激光光镊拉曼光谱技术(LTRS)是一种将激光光镊与共聚焦拉曼光谱技术相结合的产物。该技术能够保证在生理条件下捕获、操控、测量在悬浮状态下单个活性细胞并对其进行生物学分析研究。这种在单细胞研究上的独特优势使其越来越受到人们的关注。本文以激光光镊拉曼光谱技术在生物医学上的应用及其技术发展历程为主线,围绕拉曼光谱技术在细胞分选及细胞的特性研究,多光镊拉曼光谱系统,微流控传输系统,多模式分析系统四个方面综述了近些年来光镊拉曼光谱技术如何通过其他技术联用及其技术的改进实现在多数据采集与整合,高效率,高通量和自动化的传输方面的发展,并概述了LTRS技术生物医学上的应用。最后,对其未来的发展前景进行展望。  相似文献   

7.
面向生物粒子操控方法的研究,在生物医学和生命科学等领域具有重要意义。光镊操控具有无接触与高精度的特点,已被广泛应用于多个领域的研究中。然而,传统光镊的光热效应以及衍射极限都制约着光镊在生物医学领域的更广泛应用和发展。近十年来,研究者们将光热效应化劣势为优势,利用光与热的耦合效应实现了多种粒子的精确捕获及操控,即光致温度场光镊(OTFT)。由于此种新型光镊对光能的利用率极高,能量密度低于传统光镊近3个数量级,并可实现颗粒的大范围操控,极大地拓展了光镊可操控粒子的种类,已经成为纳米技术以及生命科学领域的重要研究工具。温度场光镊仍面临诸多问题,例如对于颗粒界面调控的依赖性以及三维捕获受限等,尤其是在生物光子学的研究中,还需要进一步发展和优化。本文对光致温度场光镊操控基本原理及其在生物医学中的应用两个方面进行了系统阐述,并对其今后的发展与挑战进行了展望。  相似文献   

8.
任洪亮  丁攀峰  李小燕 《物理学报》2012,61(21):155-159
光镊利用光学梯度力捕获和操控微小粒子,已经成为深入研究生物分子间相互作用等微观机制的独特技术.光镊光束操控系统一般由扩束输入镜、扩束输出镜、调焦透镜、耦合透镜和压电转镜等光学元器件组成,以保证物镜后瞳充满的前提下实现光镊阱位操控.光镊阱位的三维精确操控是实现光镊位钳和力钳模式的基本条件.本文根据矩阵光学,对基于无穷远校正显微镜的光镊操控光路进行计算,分析扩束输入镜、调焦透镜和物镜轴向位置调整,以及压电转镜、调焦透镜和耦合透镜安装位置误差对光镊径向阱位操控精度的影响,得到了物镜高度调整基本不会影响光镊径向位置操控,压电转镜和调焦透镜的安装位置误差对光镊径向阱位操控精度影响最大等结论,提出了能够实现径向阱位精确操控的轴向阱位动态操控范围,为光镊设计和操控提供理论和实验指导.  相似文献   

9.
针对金属表面等离激元光镊热损耗问题,设计了一种硅基双纳米柱加纳米环的光镊结构.通过有限元仿真在1 064nm入射光场下计算了三种不同硅基纳米结构(硅基纳米球、纳米柱、纳米环)的场增强效果.利用硅基纳米结构光学共振机理,设计了一种电场增强倍数达到7.39倍的硅基双纳米柱光镊结构.在此基础上,增加纳米环使光镊结构的环中心与双纳米柱间隙产生光学共振耦合现象,得到的电场增强倍数高达11.9倍,形成了稳定的光学势阱.最后采用麦克斯韦应力张量法对硅基光镊中不同直径的聚苯乙烯小球进行了捕获分析,并在x、y、z方向上计算分析了直径为25nm的聚苯乙烯小球在不同位置的捕获力、捕获势能以及捕获刚度.设计的硅基纳米双圆柱加纳米环的光镊结构能够对聚苯乙烯小球起到良好的捕获效果.  相似文献   

10.
利用光镊技术演示光的自旋角动量   总被引:2,自引:0,他引:2  
李银妹 《物理实验》2007,27(12):6-10
阐述了光与物体相互作用时自旋角动量的传递与扭力矩原理.基于光镊光致旋转原理,利用能够悬浮单个粒子的光镊技术并采用具有双折射特性的CaCO3晶体粒子,设计了微粒在不同偏振光场中的旋转运动实验内容,研究光与双折射晶体粒子相互作用产生的光致旋转效应,观察和测量由自旋角动量引起粒子的扭转力矩的大小、方向以及旋转速度等力学效应.  相似文献   

11.
在生命科学研究中和在微量液体环境下分离液体中的细胞、生物大分子或胶体颗粒一直是一项具有挑战性的工作。"光镊"技术自20世纪80年代被提出到现在,在生命科学研究领域已经得到了日益广泛的运用。激光对细胞捕获的作用已得到进一步扩展,二维"光镊阵列"技术是近年来"光镊"技术中最重要的发展之一。讨论了阵列光镊的发展现状及基本原理,分析了它在生命科学中的应用,并对其发展趋势进行了展望。  相似文献   

12.
任洪亮 《物理学报》2013,62(10):100701-100701
光镊是研究单分子生物物理特性的独特工具, 因而光镊设备的研发是一个极为重要的课题. 本文根据矩阵光学, 对基于有限远共轭显微镜的光镊操控光路进行计算, 得出了阱位径向操控和轴向操控方程, 并分析了光束调控系统、 共焦系统后置透镜和耦合透镜安装位置误差及物镜轴向位置调整对光镊阱位径向及轴向操控精度的影响. 计算结果显示, 当物镜初级像面和耦合透镜像方焦面完全重合, 光束调控系统和耦合透镜的距离误差对阱位径向和轴向操控精度没有影响. 光镊系统元器件定位不准时, 基于无限远共轭显微镜光镊的阱位径向操控误差和轴向操控误差都小于基于有限远共轭显微镜光镊的阱位径向操控误差和轴向操控误差. 当光镊耦合透镜定位误差控制在小于10 mm时, 基于有限远共轭显微镜光镊的径向和轴向操控误差分别小于5.9%和11.4%, 有限远共轭显微镜仍然存在改造为光镊的价值.本文理论为基于有限远共轭显微镜的光镊设计、改造和操控提供理论和实验指导. 关键词: 光镊 光学设计 矩阵 误差  相似文献   

13.
提出了一种用于生物细胞多路捕获与操纵的单光纤光镊。基于两种不同模式的光纤错位拼接,实现了LP01和LP11模式共存。该光镊的输出光场具有多个聚焦光斑,能够在多个支路上同时捕获和操纵多个生物细胞。仿真和实验结果表明,该光镊能够在三个支路上同时捕获和操纵多个小球藻细胞,在光镊移动速度约为14μm/s时仍能保持捕获稳定。该光镊结构简单,为生物传感和直接检测生物信号提供了更多可能。  相似文献   

14.
阐述了纳米光镊技术的特点,它将操作和探测精度从微米提高到纳米。归纳和总结了纳米光镊技术最新方面的研究进展,叙述了一些先进组合技术在改进光镊装置构造、操作精度以及校准方面的应用,并在此基础上提出了一些构想和建议。  相似文献   

15.
 传统的机械镊子夹持物体时必须用镊尖接触到物体,然后施加一定的压力,物体才会被钳住,而光镊则不同,它是基于光的力学效应使物体受到光束的束缚从而达到钳制的效果,然后通过移动光束来迁移或翻转物体。与机械镊子相比,光镊是以一种温和的非机械接触的方式来夹持和操纵物体,能够无损伤地实现对微小的活细胞以及纳米量级的颗粒进行捕获与操作。光镊的发明给人们研究微观世界提供了一种新的手段,可以预言,在纳米科技和生命科学迅速发展的21世纪,做为这两个领域得力工具的光镊技术必将具有光明的应用前景,成为本领域科学研究不可或缺的技术手段之一。  相似文献   

16.
马建兵  翟永亮  农大官  李菁华  付航  张兴华  李明  陆颖  徐春华 《物理学报》2018,67(14):148702-148702
磁镊是一种高精度的单分子技术,它用磁场对连有生物大分子的超顺磁球产生磁力,通过追踪磁球的位置来测量生物大分子的长度信息.磁镊包括横向磁镊和纵向磁镊.纵向磁镊空间精度高,但昂贵;横向磁镊简单便宜,但由于受其成像原理的限制,一般情况下只能连接较长的DNA等生物大分子,且其空间精度较差,进而限制了其应用范围.为了解决这个问题,本文改进了横向磁镊,用片层光照明的方法使光线主要被磁球散射,从而能够直接观察到吸附在样品槽侧壁上的磁球,这使得测量短连接的底物成为可能.对于实际应用的检测,首先测试了包含270 bp发卡结构的0.5μm双链DNA,用其中发卡结构的"折叠-去折叠"跳变过程证明了改进后的横向磁镊的确可以追踪短DNA等生物大分子.然后,进一步用16μm的λ-DNA检验了实验系统.最后,将新型横向磁镊与普通横向磁镊及纵向磁镊在小力和大力条件下拉伸不同长度DNA的噪声进行了比较,发现改进后的横向磁镊在空间精度上明显优于普通横向磁镊,与纵向磁镊相比也无明显差异.以上结果证明了改进后的横向磁镊的精度优势,并扩展了横向磁镊的应用范围.  相似文献   

17.
郑明杰 《光子学报》2011,(12):1884-1887
光镊所捕获的微球尺度常常落在中间尺度上,导致相关参量难于计算.OTT1光镊工具箱是一种基于广义Lorenz-Mie理论的T-matrix方法,它的发展使得对光镊系统的详细计算和评价成为可能.本文对光镊的轴向捕获特性曲线、线性性和刚度,以及杜克系列微球的互换性做了计算和评价.结果表明:光镊所用物镜的数值孔径越接近水的折射...  相似文献   

18.
郑明杰 《光子学报》2014,40(12):1884-1887
光镊所捕获的微球尺度常常落在中间尺度上,导致相关参量难于计算.OTT1光镊工具箱是一种基于广义Lorenz-Mie理论的T-matrix方法,它的发展使得对光镊系统的详细计算和评价成为可能.本文对光镊的轴向捕获特性曲线、线性性和刚度,以及杜克系列微球的互换性做了计算和评价.结果表明:光镊所用物镜的数值孔径越接近水的折射率捕获效果越好;0.8~1.2 μm的聚苯乙烯微球组成的光镊刚度较大;直径在2 μm以下的聚苯乙烯微球组成的光镊线性度较好;0.8~2 μm的Duke系列聚苯乙烯微球的互换性较好,便于纳米光镊的修正与实验;要避免米共振微球的直径要在2.5 μm以下.  相似文献   

19.
使用单束强聚焦的基模高斯光束可以构建光镊装载原子。虽然光镊一般选择远离原子共振跃迁线的激光,但是光镊的强度起伏仍然会导致原子逃逸,这样原子在光镊中的俘获寿命问题就变得至关重要。本实验以声光频移器(AOM)为主要元件,并施加外部反馈控制电路抑制937.7 nm波长光镊频域上的强度噪声以及时域上的功率起伏,降低光镊对原子的参量加热,从而有效延长原子在光镊中的俘获寿命。典型的频域噪声抑制带宽17 kHz,噪声强度抑制10 dB,时域内激光强度起伏可以从峰峰值起伏±1.350%抑制到±0.036%,有效地降低了光镊的强度起伏。实验结果表明我们可以将937.7 nm波长光镊中单个铯原子俘获寿命从200 ms延长至1 180 ms.为后续原子内态的制备、激发等操作提供充足的时间,保证原子处于俘获状态,提高了实验成功率,缩短了实验时长。  相似文献   

20.
光镊利用强会聚激光对微粒产生的梯度力来捕获微粒,可以进行无损、远程操控,同时具有皮牛精度的测力特性,已经成为物理学、生命科学和胶体化学等研究领域中不可缺少的研究工具。光镊效应可以表现微小的光子动量和角动量,是物理学的重要教学工具。本文根据高斯光束传播和变换规律,设计具有稳定捕获性能的最小化光镊,并给出了典型参数。光镊系统由捕获激光、光束耦合系统、倒置生物显微镜和大数值孔径物镜组成,成像系统由物镜、摄影目镜和CCD相机组成。本光镊系统具有紧凑特性,同时通过保持物镜后瞳充满度来实现稳定捕获。在该最小光镊系统上,可以根据用户需求增加光镊阱位操控系统、刚度调节系统和其他辅助设备以满足不同操控要求,可以很好地满足科研和教学需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号