共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
以高含氮量的苯胺五聚体二羧酸为配体,在预氧化的泡沫镍上通过溶剂热反应合成了Fe,Co金属有机框架材料Fe/Co-MOF,再以Fe/Co-MOF为金属源和碳源,经磷化后制备出一种新型的双金属(Fe,Co)和杂原子(N,P)共掺杂的碳材料Fe/Co/P-NPs.通过扫描电子显微镜和高分辨透射电子显微镜表征发现,Fe/Co/P-NPs由纳米粒子和纳米片组成,并且形成Fe2P和Co2P两种晶体.电化学测试结果表明,Fe/Co/P-NPs在析氢、析氧及水电解中表现出了优异的多功能催化活性.在1 mol/L KOH中,Fe/Co/P-NPs在10和100m A/cm2电流密度时的析氧过电位分别为270和300 m V,均小于其它对比材料,优于负载在泡沫镍上的RuO2.作为水电解双功能催化剂,Fe/Co/P-NPs仅需1. 48 V的电位即可获得10 m A/cm2的电流密度. 相似文献
3.
氢能是一种绿色、 高效的二次能源, 在廉价的非贵金属催化剂的辅助下, 电解水制氢以其低成本和高效率受到广泛关注. 过渡金属磷化物因其独特近似球形三角棱柱单元结构能够暴露出更多配位不饱和表面原子, 因此在电解水制氢中表现出优异的催化活性和强耐腐蚀性. 本文综述了过渡金属磷化物的制备方法和在电催化析氢中的应用和性能的改善策略. 最后讨论了过渡金属磷化物催化剂存在的一些亟待解决的问题, 并展望了其未来的发展方向. 相似文献
4.
使用硫酸镍、硝酸铁、磷酸二氢铵和柠檬酸钠在泡沫镍为载体的基底上,采用电沉积方法制备出泡沫镍负载Ni磷化物(nickel phosphide)和泡沫镍负载Fe磷化物(iron phosphide)两种电催化剂,通过SEM测试表征催化剂的结构及形貌,并通过电化学测试催化剂的析氧和析氢及催化活性等参数。研究结果表明:在100mA/cm2电流密度下,Ni磷化物工业过电位为349mV,相较于Fe磷化物催化活性性能高了33%;Ni磷化物和Fe磷化物的催化面积(Cdl)值分别为27.01 mF/cm2和3.64 mF/cm2,Ni磷化物较Fe磷化物的活性面积提高近10倍。 相似文献
5.
制备了稀土磷化物(LnP,Ln=La、Nd、Sm和Y),研究了其光学、电学和光电性质。这些化合物的电阻率很低,接近半导体电阻率下限。霍尔系数测定和热探针的实验表明,化合物为n-型载流子导电材料,载流子浓度很高,电阻温度系数为负值。计算了化合物的活化能和费米能级的位置。化合物的禁带宽度为1.4~1.0电子伏特。在光照下,SmP和YP在p型单晶硅上的镀膜具有光生伏特效应。提出了稀土磷化物的能带图,并解释了其光学和电学性质。 相似文献
6.
7.
氢能源因其储量丰富、高效、零污染等特性而受到广泛关注.电解水产氢作为一种有效的获取氢能源的方式成为当前研究的重点.但由于电极表面反应过电势的存在极大增加了电解水的能耗,因此需要开发高效的电催化材料以提高电解水反应动力学.考虑到实际应用,设计和构筑在同一电解液中同时具有高效催化产氢和释氧能力的双功能催化材料更为重要且更具挑战.目前,越来越多的非贵金属基双功能催化材料被开发和报道,比如过渡金属硫化物、氧化物、层状双金属氢氧化物、碳化物、氮化物和磷化物等,其中又以磷化物的研究更为广泛.金属有机骨架化合物(MOFs)因其具有独特的性能(孔隙率高、超高比表面积、可调控的化学组分和孔道结构等)在能源转化等领域得到广泛应用.但是,基于MOFs材料转化的多组分过渡金属磷化物应用于全分解水体系的报道还比较少.先前的研究表明,优化催化材料的微纳结构和化学组成是提高材料催化性能的关键.我们利用三步法(晶体生长、自组装和磷化)设计并制备了一种基于MOFs转化的新型分级纳米复合材料CoP@ZnFeP.透射电子显微镜(TEM)结果显示,自组装形成的花状Co3O4@Fe-MOF-5中空结构在磷化后形貌能够很好地保持.X射线衍射(XRD)表明, CoP@ZnFeP纳米复合物是由大量的混合纳米晶体组成,主要包括Co2P, ZnP2和Fe2P.在碱性(1.0mol/L KOH)条件下, CoP@ZnFeP纳米复合物表现出优异的催化产氢(HER)和释氧(OER)性能,其释氢和产氧的启动电位分别为–50和148m V(vs.RHE),相应的Tafel斜率分别为76和53.9m V/decade.优异的电催化性能主要归功于复合材料的多级纳米结构组元(纳米粒子、纳米笼和纳米管),其有序的多孔结构和大的比表面积有利于电解液的渗透、气体的扩散和电子的转移.作为对比,我们利用相似方法制备了CoP和ZnFeP纳米粒子的机械混合物(CoP/ZnFeP).测试数据表明, CoP@ZnFeP分级复合材料的催化性能优于CoP/ZnFeP机械混合物.鉴于CoP@ZnFeP复合材料优异的催化性能,我们将其应用于全分解水体系.在两电极体系中,达到10m A/cm~2电流密度仅需1.6V电压,表明材料具有优异的全分解水性能.同时该复合物也显示出较好的稳定性,经过24h连续水解后,电解电位仅升高70m V.但同时我们也注意到电极表面剧烈产生的气泡会对电极材料的稳定性有严重影响.此项研究可为设计高效的非贵金属催化材料应用于能源转化和储存等领域提供较好的思路和借鉴. 相似文献
8.
氢能作为一种零碳排放的清洁能源,主要通过电解水的途径获得。电解水析氢过程所使用的贵金属Pt基催化剂非常稀缺和昂贵,因此开发具有高活性和稳定性的非贵金属催化剂仍然是一个巨大的挑战。自支撑型过渡金属磷化物析氢性能优异,加之有效结合了自支撑基底的诸多优势,有望成为可替代贵金属Pt基催化剂的优良析氢材料。本文详细介绍了自支撑型过渡金属磷化物的研究进展,着重论述了此类型电催化剂的析氢优势及作用机理:(1)自支撑基底3D集成框架导电性较强,可提供大量的电子转移通道,从而加速催化反应进程;(2)自支撑型过渡金属磷化物较大的比表面积将会暴露出更多的活性位点,进而促进催化反应的发生;(3)自支撑型过渡金属磷化物可以直接作为阴极进行析氢反应,避免传统涂覆法中催化剂容易从玻碳电极脱落的弊端。最后,总结了此类型电催化剂用于电解水反应所面临的问题和挑战,并进行了合理的展望。 相似文献
9.
由超薄边框相互连接形成的贵金属纳米框架以负载量低、活性高等优势在多相催化领域受到了广泛关注.纳米框架独特的三维开放可及性结构不仅能够在边缘和顶点处暴露出更多的活性位点,提高贵金属活性位点利用率,还可以将反应底物限制在纳米范围内,增加底物分子碰撞的几率.本文综合评述了贵金属纳米框架材料的合成策略,总结了近年来贵金属纳米框架催化剂在电催化领域的研究进展,并对其未来发展方向和面临的挑战进行了展望. 相似文献
10.
11.
氢气具有环境友好、含量丰富、高能量密度等特点,是一种可以替代化石能源的绿色环保可再生能源. 电解水是制备氢气最有效途径之一. 但在电解水过程中,动力学过程非常缓慢,过电位较大的阳极析氧半反应严重限制了阴极析氢反应效率. 因此,研究高效、稳定和低成本的催化剂来降低析氧反应的过电位,从而提高析氢反应效率受到了广泛关注. 基于非贵金属催化剂本身特性及其在高浓度OH-条件下具有较高OER催化活性等原因,本文首先简要介绍碱性条件下析氧反应机理及其性能的评价方法,然后重点讨论非贵金属电催化析氧催化剂的最新研究进展. 最后对如何深入研究催化机理、设计高效、双功能及新型非贵金属电催化析氧催化剂进行了展望. 相似文献
12.
一种分析磷及其磷化物的新方法 总被引:2,自引:0,他引:2
测定固、液相样品中磷及其化合物的新方法是将待测样品中的磷及其化合物分解并被原子氢还原为PH3,再用气相色谱仪测定。该方法不需化学预处理,快速、灵敏、可靠,测定结果与分光光度法基本一致。 相似文献
13.
日益严重的能源危机和环境污染问题使得探索清洁的可再生能源载体及减少对传统化石燃料的过度依赖成为人们面临的一项重要任务.因此,各种可持续能源如太阳能、风能、海洋能和生物质能等得到了广泛研究并取得了一定的进展.然而,这些能源因存在间歇性和不稳定性等缺点阻碍了其实际应用.近年,氢气作为一种能源载体,以其高能量密度和无碳排放的优点引起了人们的广泛关注,被认为是缓解日益严重的污染问题的最有前途的环保能源.对比目前采用的天然气热解和煤炭气化等传统制氢策略,电催化水裂解由于催化效率高,制氢纯度高和不产生温室气体,被认为是高效、环保、可持续的制氢策略.电催化水裂解由两个独立的半反应组成,分别是析氢反应和析氧反应.析氢反应作为水裂解的一个半反应,在降低制氢成本及提高产氢催化效率方面起着关键作用.然而,目前的核心问题之一是要开发高效的析氢电催化剂,以加快反应速度.目前,铂和铂基纳米材料被认为是高效的析氢电催化剂,但是其稀缺性和高成本阻碍了大规模实际应用.金属磷化物由于具有较高的本征活性并且在不同的电解质中都具有良好的电催化析氢性能,被证明是一种优良的析氢电催化剂.此外,与普通催化剂相比,金属磷化电催化剂还具有合成简便、效率高、成本低、省时等优点.本文详细介绍了近年人们在金属磷化物用于电催化析氢研究中取得的进展.首先,介绍了电催化析氢反应机理,金属磷化物的结构及作用,并对其优缺点进行了总结;随后,综述了金属磷化物的合成方法,包括后处理、原位生成和电沉积策略,并对不同方法进行了比较和讨论.此外,从元素掺杂、界面工程、空穴工程、修饰特定载体、构建特定纳米结构、设计双或多金属磷化物和其他发展的新方法等七个方面详细总结了促进金属磷化物电催化活性的多种策略,并进行了对比和讨论.最后,归纳了金属磷化物在电催化析氢应用中存在的问题和面临的挑战,并对未来的研究发展提出了展望. 相似文献
14.
钛基二氧化铅电催化电极的制备及电催化性能研究 总被引:32,自引:0,他引:32
以电沉积法制备了钛基PbO2电极,优化并确定了电极的制备工艺,以苯酚为目标有机物,考察了电极的电催化氧化性能,研究结果表明,该电极的电催化性能优于传统的DSA钛基RuO2电极。采用该电极,在10Ma/cm^2电流密度下通过0.72Ah电量后,可使100Ml、COD浓度为270mg/L的苯酚溶液中的苯酚完全分解,COD去除率为67.4%,单位电量COD降解量为0.254mgCOD/Ah,且电流效率随电流密度的增加而减小,初步研究了苯酚的电催化氧化机理,提出了苯酚的电催化氧化可能是由苯酚的直接电化学氧化为苯醌及苯醌的间接电化学氧化有机酸两部分组成。 相似文献
15.
《高等学校化学学报》2018,(12)
从分子结构设计出发,以六氯环三磷腈、对羟基苯甲醛、三氯氧磷及新戊二醇等为原料,制备了一种新型阻燃剂六[4-(5,5-二甲基-1,3,2-二氧杂己内磷酰基)苯氧基]环三磷腈(HDDCPPCP),并将其与聚磷酸铵(APP)和多壁碳纳米管(MWCNT)复配,应用于环氧树脂(EP)中,制备了HDDCPPCP/APP/MWCNT/EP阻燃复合材料.利用极限氧指数(LOI)、水平燃烧(UL-94)、锥形量热(CONE)、拉伸、弯曲和冲击等方法研究该阻燃复合材料的燃烧性能、热性能及力学性能.实验结果表明,保持阻燃体系总质量分数为30%,当MWCNT质量分数为2%时,EP2(HDDCPPCP/APP/MWCNT/EP)的各项燃烧参数综合表现较好,其LOI值达到42. 8%,热释放速率峰值(pk-HRR)、热释放速率平均值(av-HRR)、有效燃烧热平均值(av-EHC)及一氧化碳释放率平均值(av-CO)相对EP0分别降低92. 5%,93. 0%,65. 2%和66. 6%,呈现出良好的阻燃、抑烟和抑毒性能; EP2的拉伸强度、断裂伸长率、弯曲强度和弯曲模量较好,分别为110. 46 MPa,6. 24%,1259. 99 MPa,377. 72 MPa. 相似文献
16.
Keggin型缺位磷钨杂多阴离子的电化学性质及电催化还原过氧化氢 总被引:5,自引:0,他引:5
循环伏安实验显示, 缺位磷钨杂多阴离子 的酸性水溶液在玻碳(GC)电极上有两对可逆的还原-氧化波. 第一对波的电荷迁移数为1.4, 有2个质子参与反应; 第二对波的电荷迁移数为1.0, 参加电极反应的质子数为1. 根据峰电流与电位扫描速率平方根的关系得到 在0.1 mol8226;L-1 NaOAc+HOAc溶液中的扩散系数 Do为3.54×10-6 cm28226;s-1. 交流伏安和交流阻抗实验表明, 的电极过程包含吸附和脱附步骤, 第一对波的电荷迁移阻抗较大, 第二对波的较小, 对应的交换电流密度i0分别为4.6×10-5和6.7×10-4 A8226;cm-2. 电极过程的可逆性及其缺位特性使它对H2O2的还原有显著的电催化作用, 因此有望用于有机物的氧化和降解. 同时, 还提出了一个相关的电催化机理. 相似文献
17.
传统芬顿(Fenton)法利用Fe2+催化H2O2产生具有强氧化性的羟基自由基(·OH),可以高效氧化降解水中有机污染物,但其操作pH范围窄(pH≈3)和易产生铁絮凝沉淀的缺点限制了其应用发展.原子氢H*作为一种单电子供体,可以将电子快速转移到H2O2中,生成·OH,适用于广泛的pH值,没有铁污泥产生,是一种新型高效绿色芬顿法.然而,原子H*更易相互结合形成H2,极不稳定,因此,探索合适的电催化剂对H*绿色Fenton的应用起着至关重要的作用.本文以炭黑作为载体,通过液相还原法制备了具有催化活性高、性能稳定的Ni/C@碳毡(Ni/C@CF)非贵金属电催化材料,制备的Ni纳米粒子均匀分散在炭黑上.以此电极材料为阴极,构建绿色Fenton催化体系,能够催化H2O和H+生成H*,进而催化H2O2产生·OH,高效降解去除水中抗生素污染物.通过调节制备方法、电压、溶液pH值及外加氧化剂量,确定了该体系... 相似文献
18.
磷钼钒杂多酸/聚酰胺-胺复合膜修饰电极的制备及电催化性能 总被引:1,自引:0,他引:1
通过静电层层自组装方法在预修饰聚二烯丙基二甲基氯化铵的电极基片上制备了Dawson型磷钼钒杂多酸/聚酰胺-胺多层复合膜. 用X射线光电子能谱、紫外-可见光谱、循环伏安法和原子力显微镜分析表征了多层复合膜的形成过程; 用循环伏安法表征了该复合膜修饰电极的电化学性能, 研究结果表明, 该复合膜修饰的电极稳定性好, 对亚硝酸盐、溴酸盐的还原以及抗坏血酸的氧化具有良好的催化活性. 相似文献
19.
采用甲醛还原、H2还原、肼还原三种方法制备了添加硅钼酸的PtMoSi/C阳极催化剂, 并用XRD、XPS和TEM技术对催化剂进行了表征. XRD表明Pt粒子呈立方面心晶态结构, TEM显示PtMoSi/C催化剂粒径小(3−4 nm), 分布窄, 分散性好. XPS分析可知Pt主要以0价, Mo主要以6价, Si主要以4价形态存在于催化剂中. 同时通过循环伏安法和线性扫描法考察了制备方法和添加硅钼酸对催化剂电化学活性的影响. 结果表明, 甲醛还原法制备的PtMoSi/C催化剂(Pt、Mo的原子比为3:1)对甲醇氧化的电化学性能和抗中毒性能优于自制的PtRu/C和E-TEK PtRu/C催化剂, 可能是因为添加硅钼酸可以使活性组分的分散度提高, 从而提高了催化剂的活性和抗毒性能. 相似文献
20.
纳米尺度的金由于常表现出有趣的尺寸效应和物理化学特性而被大量应用于催化反应中,但是其在电催化反应中的应用却十分有限. 本文以水为溶剂、HAuCl4为前驱体、十二烷基聚乙二醇醚(Brij 35)等为软模板剂、NaBH4为还原剂、活性炭或石墨烯为载体,在温和反应条件下获得担载型金纳米电催化剂. 本文考察并优化了关键制备参数和样品纯化方法,最终确定NaBH4的最佳浓度区间为5 ~ 10mmol•L-1,Brij 35的最佳浓度约为1 mmol•L-1,在3 ~ 16 oC下金纳米颗粒的尺寸容易控制,石墨烯和活性炭(EC600)是金纳米颗粒的良好载体. 在优化的反应条件下,金纳米颗粒的粒径可以被控制在1 ~ 4 nm. 热处理法可以有效去除表面活性剂,纯化后的担载型纳米金电催化剂在醇类小分子的氧化反应中表现出良好的性能. 相似文献