首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
针对高热流密度固体激光器的散热问题,借助微机电系统(MEMS)技术,利用微通道/热源协同设计方法,换热器采用连续S型微通道,并利用歧管形成分层分段流动,研制出了一套微型紧凑的嵌入式歧管S型微通道散热器,并开展了实验研究。使用HFE-7100作为冷却工质,在发热面局部最高温度小于100℃、平均温升小于45℃的情况下,两相时可带走625 W/cm2的热通量,相比传统的歧管矩形微通道散热器提高了12%,但流阻增大了约56%;利用数值模拟方法,通过改变S型的振幅和波长,根据发热面平均温度、换热面平均努塞尔数、压降和综合性能因子来评估S型微通道散热器的结构参数对其散热能力和流动阻力的影响,寻找S型微通道的最优结构设计参数组合。结果表明该散热器的综合性能因子在一个特定的S型形状下存在最佳值。  相似文献   

2.
 因焦耳加热导致光导开关芯片温度升高并形成局部热点,影响了光导开关功率容量、重复频率和寿命的提高,因此需对光导开关进行主动冷却。设计了一种矩形微槽硅微通道散热器,其由散热器本体和盖板两部分组成,散热器本体上设有分流槽、矩形微槽阵列、汇流槽,盖板通过半导体刻蚀工艺形成通孔,两部分通过硅-硅键合工艺连接以形成闭合通道。以水为工质,实验测试了不同冷却工质流量、进口温度时微通道散热器的换热性能、温度均匀性和流体阻力,证明该微通道散热器在适中的冷却工质流量下具有较高的换热性能、较低的流体阻力和较好的温度均匀性,满足重复频率大功率光导开关的散热冷却需求。  相似文献   

3.
微电子设备的发热问题严重影响着其可靠性,散热器的热设计已成为微电子设备结构设计中不可忽略的一个重要环节。微通道散热是近年来发展起来的一种新型散热措施。设计了多种新型的微通道散热器结构,并利用数值方法研究了新型微通道结构散热性能及微通道内流体的流场分布情况。研究结果表明,新型微通道散热器增大了换热比表面积,具有较好的散热效率。菱形肋微通道(导流角度120°)的散热效率改善的尤为明显。各新型微通道靠近壁面的死区较少,流体与通道的接触面积也更多,因而换热效果较好。尤其是菱形肋微通道(导流角度30°)内的流场分布更为均匀。  相似文献   

4.
为进一步提高微通道散热器的散热性能,降低生产成本,提出一种新型多孔铜微通道散热器。以台式工作站作为散热器散热性能测试平台,研究驱动电机不同转速下的多孔铜微通道散热器的散热性能。结果表明,多孔铜材料的孔径和孔隙率分别为380μm、37.7%时,可获得多孔铜微通道散热器的最佳散热性能;采用中间进两端出的多孔铜微通道散热器的散热性能显著高于单进单出的多孔铜微通道散热器,且已达到市售高端微通道散热器的散热能力。  相似文献   

5.
为满足电子电路、燃料电池、激光器等精密仪器及器件的持续高效散热需求,本文设计了一种基于冲击流动的分流式正弦型微通道换热器,传热效率更高,压降损失更小,加工工艺更简单。本研究主要通过热–流–固耦合的数值模拟方法,对比了微通道宽度、深度、形状及分流结构对换热器传热和流动特性的影响。模拟结果表明:带有8个分流通道的分流式正弦型微通道换热器的综合性能最好,微通道长、宽、深尺寸为30 mm×0.4 mm×2.5 mm,在冷却液流量为0.6 mL·s-1时,总热阻为0.247?C·W-1。在实际工作中,换热器总热阻为0.395?C·W-1,压降损失也较小,所得实验结果与模拟结果基本吻合,相比于预设计的换热器和大通道换热器,优化后的正弦型微通道换热器在传热和流动性能方面均获得了显著提升。  相似文献   

6.
针对大型计算机服务器CPU的耗能量,探讨了一种新的热管排布方式的散热器,并对其散热性能进行了实验研究.研究结果表明,采用此种热管散热器,最高热流密度为74.3W/cm2,其冷却风速控制在4m/s即可满足芯片冷却要求.同时根据模拟计算得到的散热器底板温度分布,可有助于对热管排布方式的优化设计.  相似文献   

7.
歧管式微通道流动特性的研究   总被引:1,自引:0,他引:1  
岐管式微通道(MMC)热沉具有热阻小、结构紧凑、冷却液流量小、流速低、沿流动方向温度分布均匀等优点.本文针对以去离子水为介质的岐管式微通道(宽W=100 μm,深H=300 μm)的流动特性进行了实验研究,实验的雷诺数范围为5O~3500.结果表明工质在微通道内流态由层流向紊流转变的临界雷诺数提前,此外数值模拟结果与实验值也吻合较好.最后在实验基础上,拟合出工质在层流和紊流下的流动阻力经验关联式.  相似文献   

8.
在低质量流速和高热流密度下,对复杂结构微流体芯片中的流动沸腾进行了瞬态流型研究,发现了毫秒级微时间尺度的周期性流型和微通道中的分层流.在单个微通道区域,液膜沿流动方向逐渐增厚且蒸干总是首先发生在其上游区域,而在不同微通道区域间,下游微通道首先蒸干.分析表明,液相弗劳德数(Froude number)较低是微通道中分层流存在的原因.高沸腾数(Boiling number)引起汽液界面较大的剪切应力从而使液体不断向微通道出口处聚集,引起液膜厚度沿流动方向逐渐增厚.  相似文献   

9.
高密度、小体积和高集成的电子元器件散热困难,易造成过早失效,采用微通道换热器可以实现小体积内高热流的散热,但流动阻力很大.为了保证传热效果,降低流动阻力,本文提出了一种新型的微通道结构并对其流动与传热特性进行了数值模拟.首先研究了微通道形状和结构,模拟结果表明:进出口截面宽高比为0.8的矩形微通道的换热效果最好;并在此基础上提出一种康托尔分型凹槽结构,研究了有无康托尔分形以及不同分形级数对流动与传热性能的影响,综合对比发现:第二级康托尔分形模型N2既能保证热阻显著降低,又能相比阵列结构降低压降,具有明显的换热优势;最后对这种康托尔分形结构的凹槽形状,尺寸及不同方向上的分形进行研究,结果表明梯形凹槽的下上表面长度比b/a为0.6、流动方向分形比fx为1.25和通道高度方向分形比fy为1.5时换热流动性能最佳.  相似文献   

10.
对92根加热棒组成的等效电池组的液冷热管理进行了实验研究,波浪形扁管穿插入电池组构成冷却通道。结果表明:电池组的最高温度和最大温差均随着冷却液流量的增大而降低,但降幅逐渐减小,冷却液泵功随着流量的增大而快速增长,综合考虑10 L/h为冷却液最佳流量;电池组的最高温度随着冷却液进口温度的降低而降低,但电池组温度的均匀性随着冷却液温度的降低而恶化;四种不同冷却液相比,体积分数为50%乙二醇溶液的电池组温度最高,均匀性最差,去离子水居中,由于石蜡的相变潜热和颗粒的微对流效应,体积分数为2%和5%相变微胶囊悬浮液对电池组的冷却效果最佳,且悬浮液浓度越高,电池组温度越低,均匀性越好。  相似文献   

11.
高密度、 小体积和高集成的电子元器件散热困难, 易造成过早失效, 采用微通道换热器可以实现小体积内高热流的散热, 但流动阻力很大. 为了保证传热效果, 降低流动阻力, 本文提出了一种新型的微通道结构并对其流动与传热特性进行了数值模拟. 首先研究了微通道形状和结构, 模拟结果表明: 进出口截面宽高比为0.8 的矩形微通道的换热效果最好; 并在此基础上提出一种康托尔分型凹槽结构, 研究了有无康托尔分形以及不同分形级数对流动与传热性能的影响, 综合对比发现: 第二级康托尔分形模型 N2 既能保证热阻显著降低, 又能相比阵列结构降低压降, 具有明显的换热优势; 最后对这种康托尔分形结构的凹槽形状, 尺寸及不同方向上的分形进行研究, 结果表明梯形凹槽的下上表面长度比b/a 为0.6 、 流动方向分形比fx 为1 .25 和通道高度方向分形比fy 为1 .5 时换热流动性能最佳.  相似文献   

12.
基于某密闭式大型电力电子设备中电抗器的散热需求,采用了蒸发冷却式的循环风冷散热系统;同时为电抗器设计了一种散热结构,用于提高电抗器的散热性能;并运用计算流体力学软件Ansys/icepak,对该结构进行了仿真优化;分析了循环风量以及该散热结构中的散热器通道宽度,导热片的数量、厚度、排列规律对电抗器散热性能的影响。研究结果表明,在散热器通道宽度为5mm、循环风量为800m3/h,采用不等间距的方式排列5块5mm的铜导热片时,该结构散热条件最佳;电抗器温升可以得到有效的控制,且温度分布均匀,满足系统的使用要求;同时也为该类电抗器的热设计提供了理论依据。  相似文献   

13.
杨圳 《低温与超导》2019,47(10):91-96
如何使散热器在保持较低流阻的基础上强化其散热性能,成为数据中心服务器冷却问题研究的焦点。通过对不同宽度比U型流道散热器的性能分析,发现宽度比为0.6、0.7或0.8的散热器,同时具有较佳的流动性能和散热性能。设计并制作了β为0.6的U型流道散热器,通过实验分析不同冷却水流量下散热器的芯片温度、热阻以及摩擦因子f,得出散热器最佳的冷却水流量为15 mL/s,以最小的流动损失获取更佳的散热效果。  相似文献   

14.
LED板状肋片散热器性能的方向效应   总被引:1,自引:1,他引:0  
为考察装配板状肋片散热器的多角度照射型LED灯的自然对流散热性能的方向效应,以一款LED投光灯的关键散热结构为研究对象,采用实验测量法验证数值模拟的计算精度,并将数值模拟的温度和流体数据用于分析3种驱动电流和7个出光倾角下最大温升和温度均匀性的散热机制。结果表明:不同倾角下的散热器肋间风道内的流速分布的较大差异,是导致最大温升和温度均匀性变化的根本原因;最高温度点的上、下游流速的差值可用于定量解释温度均匀性的变化规律。不同倾角下肋片间距对最大温升的影响趋势表明:最佳间距附近的散热器性能对倾角的敏感度最高,散热能力的方向效应不容忽视。  相似文献   

15.
本文用稳态层流模型对几种具有不同肋片间距的环型通道内的流动和换热进行了数值模拟.计算结果表明:长直肋片截断后,流动和换热沿长度方向具有周期性的入口段效应,从而增强了换热.与长直肋片通道相比,βL=13/7时,换热增强了27%,而阻力仅增加6.8%.对于带肋环形通道,Re数增大,换热增强.  相似文献   

16.
针对IGBT的冷却问题,通过三维数值模拟方法对一种微槽结构散热器内部的换热特性进行了研究。由于IGBT所需散热面积较大,常规微米级尺度的微槽通道在满足换热要求的同时往往需要消耗较大的泵功率,据此提出一种小尺度沟槽表面通道结构,以水为冷却剂对通道内充分发展层流流动换热特性进行了数值研究,并与平表面通道内换热特性进行对比。结果表明:新型微槽表面通道可有效增强对流换热效果,且对流换热系数随着雷诺数的增大而增大。  相似文献   

17.
针对聚光光伏(CPV)电池高热流密度散热问题,本文提出了射流冲击与分形微通道散热相结合的解决方案,对其流动和换热进行了模拟.首先对分形微通道的分形级数进行分析,四级相比三级分形微通道换热系数只增加了4.62%,压降却升高了54.37%;接着对管道截面形状进行优化,对圆形截面,方形渐缩截面和扁管截面内流体的流动进行了模拟,结果表明在换热量相近的情况下,扁管拥有最低的压降;随后对比分叉处倒圆角、倒角和Y形三种布置形状,结果表明Y形布置有效地减少了内部流体的涡旋区,能够在牺牲较少的换热面积的条件下,将压降降低85.51%.最后在相同水力直径条件下研究单个喷嘴、均匀喷嘴阵列、非均匀喷嘴阵列射流冲击分形微通道的换热性能,模拟结果表明,非均匀喷嘴阵列分形微通道拥有最佳的换热性能,且压降降低了25.99%.  相似文献   

18.
实验研究了三角形硅微通道中的流动冷凝.通道中的冷凝流型沿程主要有珠状流、环状流、喷射流和弹状-泡状流等.在同一通道中,喷射流位置随着工质流量的增大而延后;在相同蒸气入口雷诺数下,喷射流位置则随着通道尺度的增大而延后.喷射流频率随着蒸气入口雷诺数和冷凝液韦伯数的增大而增大.较小水力直径的三角形通道中的流动冷凝不稳定性较高.冷凝通道的壁面温度呈沿程下降趋势.在同一通道中,流动冷凝的平均冷凝传热系数和平均努塞尔数,皆随着蒸气入口雷诺数的增大而增大,通道尺度的减小显著强化冷凝传热.  相似文献   

19.
根据高功率二极管激光器的散热需求,设计了一种储能式相变冷却实验系统,并开展了喷雾相变冷却器和微通道相变冷却器的设计。采用多孔微结构的换热表面,用氨做制冷剂,实现了喷雾相变冷却器表面温度37 ℃时,散热功率密度达到了511 W/cm2。采用节流汽化原理,分别设计了背冷式相变微通道冷却器和薄片型的模块式相变微通道冷却器,背冷式相变微通道冷却器采用氨做制冷剂, 散热功率密度达到了550 W/cm2,采用R124做制冷剂,散热功率密度约270 W/cm2。采用R124做制冷剂,实现了脉冲激光功率3 kW和连续激光功率100 W的相变冷却二极管激光器模块封装。  相似文献   

20.
针对大功率LED照明散热问题,本研究将新型平板热管传热与大功率LED照明灯散热相结合,试验研究了利用平板热管散热器散热的LED阵列光源的工作状况。试验结果表明:与无热管的肋片散热器相比,加热管的LED光源芯片中心温度在结温允许范围内比只加普通肋片的LED低约5℃,设置平板热管的LED照明装置的散热器各部分温度分布更均匀。散热器表面温度达到稳定所需时间较快,这种结构的热管散热器可以有效提高肋片散热器的工作效率、结构紧凑、重量轻、成本低,可以满足未来大功率LED散热的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号