首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The presence of triplet state-oxygen adducts (a species previously proposed but never observed in a direct manner) is readily observed following laser flash photolysis studies of 2,2'-thenil. We report on the kinetic and spectroscopic parameters characteristic of this transient adduct.  相似文献   

2.
3.
Photolysis of N-benzoyl-S,S-diphenylsulfilimine or N-benzoyl dibenzothiophene sulfilimine produces PhNCO and also benzoylnitrene. Direct observation of the triplet nitrene, energetic differences between the singlet and triplet state of the nitrene, and oxygen quenching experiments suggest that the triplet nitrene derives from the triplet excited state of the sulfilimine precursors, rather than through equilibration of nearby singlet and triplet states of the nitrene itself. In acetonitrile, the formation of an ylide, followed by cyclization to the corresponding oxadiazole, is the predominant nitrene chemistry, occurring on the time scale of a few microseconds and few tens of microseconds, respectively. Trapping experiments with substrates such as cis-4-octene suggest that reactivity of the nitrene is mainly through the singlet channel, despite a fairly small energy gap between the singlet ground state and the triplet.  相似文献   

4.
Photolysis of aqueous kynurenine (KN) solutions results in the formation of triplet kynurenine TKN. In low pH solutions, triplet formation occurs with almost 100% efficiency, while in neutral solutions the triplet quantum yield is PhiT = 0.018 +/- 0.004. The dissociation constant of TKN, which is attributed to deprotonation of the anilino group, has a pKa value of 4.7. Similar triplet absorption spectra were obtained under direct and acetone-sensitized photolysis. The large difference in quantum yields as a function of pH is attributed to excited-state properties of the first excited singlet state of KN. The rate constant quenching for TKN by oxygen is kq = 2 x 10(9) M(-1) s(-1).  相似文献   

5.
The photochemistry of 1,2-dihydronaphthalene oxide (254 nm) was reexamined and indan was found to be a primary photoproduct, as well as the traditionally assumed secondary photoproduct. Quenching studies demonstrated that indan, as a primary photoproduct, is derived from a triplet pathway, competing with a singlet route, back to the ground state surface. CASSCF calculations strongly suggest that the triplet pathway consists of a dissociation of the oxirane moiety to give a triplet carbene and aldehyde, which via hydrogen abstraction-decarbonylation-ISC recloses to give indan. Conical intersections corresponding to the presumed 1,2-hydrogen shift and 1,2-alkyl shift to give 2-tetralone and 1-indancarbaldehyde, respectively, were located computationally.  相似文献   

6.
7.
The photochemistry of eight aromatic carbonyl based photopolymerisation initiators is examined and compared using u.v. absorption, phosphorescence, micro-second flash photolysis, steady-state photolysis and photopolymerisation rates for n-butyl methacrylate. In the latter case, conversion rates are significantly greater in the presence of a tertiary amine (diethylmethylamine). In both the presence and absence of the amine, the photofragmenting type initiators are more efficient than the hydrogen abstracting benzophenone. Benzil exhibits the most notable conversion rates from being the least efficient in the absence of the amine to the most efficient in its presence. There is no definite correlation between εmax and phosphorescence quantum yields with photopolymerisation rates, although it is significant that overall the phosphorescence quantum yields are enhanced to varying extents by the tertiary amine. End-of-pulse transient absorption spectra between 300 and 380 nm (λmax at ∼ 340 nm) for the photo-fragmenting initiators in 2-propanol are tentatively assigned to the benzoyl radical, whereas benzophenone gives the typical ketyl radical formed via hydrogen atom abstraction at ∼ 500 nm. In the former case, transient formation is reduced by up to 50% in the presence of the tertiary amine except for benzoin and Irgacure 184. In the case of benzophenone, ketyl radical formation is enhanced significantly. All transients are strongly quenched by oxygen indicating that the triplet state is directly involved in free radical formation. Transient formation from benzil appeared to be the least affected by oxygen and this effect may well account for its high efficiency during polymerisation. Addition of the hydrogen donors benzhydrol and a secondary amine (diethylamine) enhances ketyl radical formation in the case of benzophenone in 2-propanol, confirming the mechanism of hydrogen atom abstraction. In the cases of benzil and benzoin, transient formation is not affected indicating that photofragmentation is the primary step in free radical formation. A steady-state photolysis study in ethyl acetate in the absence and presence of the hydrogen atom donors appears to support this conclusion. The application of these results in terms of current mechanisms is discussed.  相似文献   

8.
9.
We report on a one-step hydrothermal growth of one-dimensional (1D) WO3 nanostructures, using urea as 1D growth-directing agent and a precursor free of metals other than tungsten. By decreasing the pH of the starting solution, the size of the nanostructures was reduced significantly, this development being accompanied by the realization of phase pure hexagonal WO3 nanorods (elimination of monoclinic impurity phase) and a red shift in optical absorption edge. Surface analyses indicated the presence of reduced tungsten species in the WO3 nanostructures, which increased two-fold in a hydrated WO3 phase obtained with further decrease in pH. We suggest that oxygen vacancies are responsible for this defect state in WO3, while protons are responsible or contribute significantly to the same in the hydrated phase.  相似文献   

10.
《Chemical physics》2005,308(1-2):93-102
The absorption and emission spectroscopic behaviour of cyclometalated fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3] is studied at room temperature. Liquid solutions, doped films, and neat films are investigated. The absorption cross-section spectra including singlet–triplet absorption, the triplet–singlet stimulated emission cross-section spectra, the phosphorescence quantum distributions, the phosphorescence quantum yields and the phosphorescence signal decays are determined. In neat films fluorescence self-quenching occurs, in diluted solid solution (polystyrene and dicarbazole-biphenyl films) as well as deaerated liquid solution (toluene) high phosphorescence quantum yields are obtained, and in air-saturated liquid solutions (chloroform, toluene, tetrahydrofuran) the phosphorescence efficiency is reduced by triplet oxygen quenching. At intense short-pulse laser excitation the phosphorescence lifetime is shortened by triplet–triplet annihilation. No amplification of spontaneous emission in the phosphorescence spectral region was observed indicating higher excited-state absorption than stimulated emission.  相似文献   

11.
The blue light photoreceptor cryptochrome 3 (cry3) from Arabidopsis thaliana was characterized at room temperature in vitro in aqueous solution by optical absorption and emission spectroscopic studies. The protein non-covalently binds the chromophores flavin adenine dinucleotide (FAD) and N5,N10-methenyl-5,6,7,8-tetrahydrofolate (MTHF). In the dark-adapted state of cry3, the bound FAD is present in the oxidized form (FAD(ox), ca. 38.5%), in the semiquinone form (FADH., ca. 5%), and in the fully reduced neutral form (FAD(red)H2) or fully reduced anionic form (FAD(red)H-, ca. 55%). Some amount of FAD (ca. 1.5%) in the oxidized state remains unbound probably caused by chromophore release and/or denaturation. F?rster-type energy transfer from MTHF to FAD(ox) is observed. Photo-excitation reversibly modifies the protein conformation causing a slight rise of the MTHF absorption strength and an increase of the MTHF fluorescence efficiency (efficient protein conformation photo-cycle). Additionally there occurs reversible reduction of bound FAD(ox) to FAD(red)H2 (or FAD(red)H-, FAD(ox) photo-cycle of moderate efficiency), reversible reduction of FADH. to FAD(red)H2 (or FAD(red)H-, FADH. photo-cycle of high efficiency), and modification of re-oxidable FAD(red)H2 (or FAD(red)H-) to permanent FAD(red)H2 (or FAD(red)H-) with low quantum efficiency. Photo-excitation of MTHF causes the reversible formation of a MTHF species (MTHF', MTHF photo-cycle, moderate quantum efficiency) with slow recovery to the initial dark state, and also the formation of an irreversible photoproduct (MTHF').  相似文献   

12.
Some new phosphoramidates, 1–3 , and the corresponding cyclophosphazanes, 4–6 , with formula Cl2P(p‐NHC6H4CH3) 1 , Cl2P(O)(p‐NHC6H4NO2) 2 , (CH3)2NP(O)Cl(p‐NHC6H4CH3) 3 , [ClP(p‐NC6H4CH3)]2 4 , [ClP(O)(p‐NC6H4NO2)]2 5 , and [(CH3)2NP(O)(p‐NC6H4CH3)]2 6 were synthesized and characterized by 1H, 13C, 31P NMR, IR, mass spectroscopy, and elemental analysis. A pseudo‐triplet signal was observed in the 1H NMR spectrum of molecule 6 for the N(CH3)2 protons. The A6A′ 6X2 spin system was suggested for the pseudo‐triplet pattern of 3JPNCH coupling in this molecule. Ab initio calculations were performed at the HF and B3LYP levels of theory with 6‐311G** standard basis set on the geometry of compound 6 . Also, the NMR chemical shift calculations were done to compare the computed results with the experimental ones. The calculated results are in good agreement with experimental data. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:337–343, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20229  相似文献   

13.
14.
Prompt fluorescence as well as delayed fluorescence emission of acridine orange was detected at room temperature from samples where this dye is adsorbed on microcrystalline cellulose. Ground state absorption studies provided evidence for dimer formation of the dye when adsorbed on cellulose, and the equilibrium constant for dimerisation was determined as 1.6±0.1 × 106mol−1g. At low loadings of acridine orange on cellulose (<1 μmol g−1) the fluorescence emission is mainly due to the monomer and is similar to that observed in ethanolic solutions where little aggregation occurs, and peaks at 530 nm. A linear dependence of the fluorescence intensity on the amount of light absorbed by the dye was established for these “diluted” samples. However, at higher loadings (>20 μmol g−1), the fluorescence intensity decreases, and the emission is broad with its maximum at 620 nm, and is mainly due to the dimer. By assuming that the excited monomer and dimer of acridine orange are the only emitting species, it was possible to determine the fluorescence quantum yields for these two species when adsorbed on microcrystalline cellulose as 0.95±0.05 and 0.40±0.10, respectively. Pulsed emission studies at room temperature in the millisecond time-range also revealed monomer and dimer emissions on this longer time-scale. These are shown to be due to thermally activated delayed fluorescence arising from the triplet states of monomer and dimer acridine orange as confirmed by diffuse reflectance transient absorption studies.  相似文献   

15.
The triplet state T1 of dichlorophenylborane (PhBCl2) has been investigated by optical emission and ODMR spectroscopic methods in order to study the influence of substituents with mesomeric and inductive effects. The zero-field splitting (ZFS) parameters D and E, the selective kinetic rates of radiative and non-radiative deactivation of the triplet sublevels and the phosphorescence spectrum were measured. From the small value of D = 0.1201 cm?1 a considerable charge transfer admixture to the 3La state of benzene has to be assumed. The ratio of the radiative rates shows a distortion of the molecule. Further a heavy atom effect of the chlorine atoms on the in-plane rates of the deactivation of T1 can be observed.  相似文献   

16.
Photorearrangement reactions of K-region arene oxides, 9,10-epoxy-9,10-dihydrophenanthrene (1a), 3-acetyl-9,10-epoxy-9,10-dihydrophenanthrene (1b), and 3,4-epoxy-3,4-dihydropyrene (1c) in dichloroethane (DCE) solution were investigated by steady irradiation and nanosecond transient spectroscopy. Photorearrangements producing substituted oxepins, 2 occur via the singlet excited state of these compounds, while the phenolic products, 9-hydroxyphenanthrene (3a), 3-acetyl-9-hydroxyphenanthrene (3b), and 4-hydroxypyrene (3c) are formed via the triplet state. Phenol 3 formation from the triplet 1 sensitized by the triplet 3 (i.e. product sensitization) is proposed for the photorearrangement reactions of 1a and 1c, and this process is the only way phenol (3a) is formed because of the negligible intersystem crossing probability of 1a. No product sensitization occurs in the photorearrangement reaction of 1b.  相似文献   

17.
Irradiation of 1-methoxyphthalazine 3-oxide in cyclohexane at 3500 Å resulted in the formation of phthalimide. On the other hand, irradiation in the presence of maleic anhydride resulted in the formation of 1-methoxynaphthalene-2,3-dicarboxylic acid anhydride. The similar cycloadduct was also observed by irradiation in the presence of benzoquinone. The formation of the cycloaddition products was also observed in acetic anhydride at 60°.  相似文献   

18.
Structural Chemistry - Hydrogen bonding interactions in linear and cyclic clusters of nitroxyl are studied using density functional theory at PBEPBE/aug-cc-pvdz level. Many-body analysis technique...  相似文献   

19.
A new octadecylamide derivative of rhodamine 19 was synthesized by reaction of rhodamine 19 ethyl ester (rhodamine 6 G) with octadecylamine. This lipophilic dye exists in two forms: as a cationic species containing a secondary amide group and as an electrically neutral molecule containing an additional ring closed between the oxygen of the amide group and the central carbon of the xanthene part. Both forms were isolated and characterized in detail by means of elemental analysis, mass spectrometry, IR, NMR and UV-VIS spectroscopy. Depending on the hydrogen ion activity in solution and the availability of solvent hydrogen for hydrogen bond formation, the cationic form easily converted into a neutral one and vice versa. On the basis of absorption and emission UV-VIS spectroscopic data, the equilibrium of the two forms was studied in various solvents. An increase in dye concentration in acidified methanol/water mixture (volume fraction of water, ?=80%) led to aggregation of the cationic molecules. Using the UV-VIS absorption data, a corresponding dimerization constant was evaluated.  相似文献   

20.
Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号