首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A long-term radon concentration monitoring was carried out in the Pál-völgy cave, Budapest, Hungary, for 1.5 years. Our major goal was to determine the time dependence of the radon concentration in the cave to characterise the air exchange and define the most important environmental parameters that influence the radon concentration inside the cave. The radon concentration in the cave air was measured continuously by an AlphaGuard radon monitor, and meteorological parameters outside the cave were collected simultaneously. The air's radon concentration in the cave varied between 104 and 7776 Bq m?3, the annual average value was 1884±85 Bq m?3. The summer to winter radon concentration ratio was as high as 21.8. The outside air temperature showed the strongest correlation with the radon concentration in the cave, the correlation coefficient (R) was 0.76.  相似文献   

2.
Radon concentration levels in water and soil gas from 36 locations pertaining to some areas of Malwa region of Punjab have been measured on an in situ basis using a continuous active radon detector (AlphaGuard, Model - PQ 2000 PRO, Genitron instruments, Germany). Exhalation rate measurements have also been carried out at these places, using a closed-circuit technique. The radon concentrations in soil and water varied from 1.9 to 16.4?kBq?m(-3) and 5.01 to 11.6?kBq?m(-3), respectively. The exhalation rate (E (Rn)) ranged between 7.48 and 35.88?mBq?m(-2)?s(-1) with an average value of 18.17?mBq?m(-2)?s(-1). Annual dose rates have been calculated for water radon concentrations. The minimum to maximum values of dose rates were found to be 13.42-31.08?μSv?y(-1). The recorded values of radon concentration in water are within the safe limit of 11?Bq?l(-1) recommended by the US Environment Protection Agency [National Research Council, Risk Assessment of Radon in Drinking Water (Academy Press, Washington, DC, USA, 1999)]. All measurements were made in similar climatic and environmental conditions to ensure minimal variations in meteorological parameters. An intermediate correlation coefficient (0.5) was observed between radon exhalation rates and soil gas values.  相似文献   

3.
Previously calibrated passive detectors (CR-39) and an active radon device (Radon Monitor RM3) were used to study seasonal variation of radon-222 concentration levels inside and outside specific locations in Jordan. The study sites were located in an area that used to be an old phosphate mine. We found that the maximum value of radon concentration in air inside the dwellings, as measured by the passive dosimeters, was 1532.9 Bq/m3 during the winter season, and the minimum one was 46.3 Bq/m3 during fall season. While the highest and lowest readings of the active monitor were 892 and 4 Bq/m3 during fall and summer seasons, respectively. The radon concentration in soil ranges from 0.2 kBq/m3 in spring to 37.8 kBq/m3 in fall.  相似文献   

4.
Radon concentration in soil-gas and in the atmospheric air has been studied around Mysore city (12°N and 76°E) using Solid State Nuclear Track Detectors. The radon in soil-gas is found to be higher at a depth of 1 m than at a depth of 0.5 m from the ground surface. The higher radon concentration in soil was observed near Chamundi Hills and Karigatta village with average values of 5.94 kBq.m−3 and 5.32 kBq.m−3 at 1 m depth from the ground surface. Seasonal variations in radon in soil gas shows that, the concentration is lower in summer with an average value of 0.60 kBq.m−3 and higher in monsoon season with an average value of 4.70 kBq.m−3. Estimation of 226Ra in soil at these locations is also made using HPGe detector. The activity of 226Ra, varies from 4.82 to 74.23 Bq.kg−1 with an average value of 32.11 Bq.kg−1. Radon concentrations in soil-gas shows good correlation with the activity of 226Ra in soil with a correlation coefficient of 0.76  相似文献   

5.
A large-volume (24.8l in total volume, 16.8l in fiducial volume) multiwire pulse ion collection ionization chamber was examined as a detector of α particles from radon decays in the air inside the chamber. The possibility of obtaining spectrometric information from slow ion pulses was tested. An energy resolution of 3.9% for 5.49-MeV α particles was obtained in preliminary measurements. It was shown that a detector of this kind could be used for direct measurements of radon activities in flowing air at a level less than 1 Bq/m3. A radon concentration at a level of 10 Bq/m3 can be measured with an accuracy better than 10 % for a counting time of 103 s. The detector will be used for continuous accurate monitoring of the 222Rn concentration in the air of low-background laboratories.  相似文献   

6.
Concentration of (222)Rn was determined in selected natural spring and tap water samples collected during spring and summer seasons from Kastamonu, Turkey. The aim of this work was to produce a map of the radon concentrations in water sources of the province and to determine any potential radiological risk for the local population. Radon measurements were performed by an AlphaGUARD radon gas analyser. The average radon concentrations were found to vary from 0.39±0.02 to 12.73±0.39?Bq?l(-1) for natural springs and from 0.36±0.04 to 9.29±0.45?Bq?l(-1) for tap water in spring, from 0.50±0.09 to 19.21±1.00?Bq?l(-1) for natural springs and from 0.31±0.03 to 13.14±0.38?Bq?l(-1) for tap water in summer. Furthermore, the results are compared with international recommendations and concentrations reported for other countries. Doses resulting from the consumption of these waters were calculated. The effective dose equivalents due to the intake of the (222)Rn present in these waters are expected to range from 0.93 to 32.54?μSv?y(-1) in summer and from 0.80 to 49.09?μSv?y(-1) in spring.  相似文献   

7.
Environmental gamma exposure and radon concentration levels measured in Venezuelan regions are presented. A new generation image analyser was used for particle track counting in CR-39 detectors. Mineral water wells from where water is supplied for massive consumption have an alpha activity around 0.450 Bq L−1 and few of them have concentrations above 50 Bq L−1. Coastal potable water activity is on the average around 5.3 ± 12% Bq L−1. Indoor radon national average is 36 ± 5% Bq m−3; in two of the 36 monitored sites, the measured average is above 400 ± 5% Bq m−3. In air gamma dose values are between 100 and 144 nGy h−1. In soil, 137Cs concentration is around 0.5 and 10 Bq kg−1 at the depth of down to 20 cm. Building materials were included in this study. 7Be and 137Cs were measured in low concentration in tropical plants on Tepuy-s (sacred mountains in the Amazonas State). Geological active faults were identified by radon concentration measurements using LR-115.  相似文献   

8.
高纯低本底氮气在低本底实验中有重要作用,对氮气的放射性氡本底纯化技术和低本底氡测量方法进行研究非常重要.利用低温物理吸附技术,对氮气中的氡进行纯化,同时建立了静电收集结合低温富集法的氡测量装置,能够测量氮气中10μBq/m3的氡本底.利用氡测量装置测量了普通氮气中和纯化氮气中的氡,结果表明,纯化系统可以将氡本底为20 ...  相似文献   

9.
10.
The radon content in water may serve as a useful tracer for several geohydrological processes. The hydrodynamic factor, presence of radium in host rocks, as well as the soil porosity and permeability control its concentration in groundwater. In order to understand the factors that control the occurrence of radon in groundwater of Doon valley in Outer Himalaya, a total of 34 groundwater samples were collected from handpumps and tubewells covering three hydrogeological units/areas in the eastern part of Doon valley. Radon variation in tubewells and handpumps varies from 25.4±1.8 to 92.5±3.4 Bq/l with an average of 53.5±2.6 Bq/l. A significant positive correlation between radon concentration and depth of the wells was observed in the Doiwala–Dudhli and Jolleygrant areas suggesting that radon concentration increases with drilling depth in areas consisting of sediments of younger Doon gravels, whereas samples of the Ganga catchment show negative correlation. The high radon levels at shallower depths in the Ganga catchment (consisting of fluvial terraces of Ganga basin) indicate uranium-rich sediments at shallower depth.  相似文献   

11.
In Italy an extensive survey has been carried out with the aim to evaluate annual average radon concentration in underground workplaces.The survey covered 933 underground rooms located in 311 bank workplaces spread throughout in all Italian regions; at this scope the sampling was stratified random in order to be representative on national scale. The annual radon concentration was estimated by using passive radon dosemeters (NRPB/SSI type holder and CR-39 as detector): the devices were exposed for a period of about 3 months and 4 cycles were performed to cover a solar year. The radon levels in underground workplaces ranged from 27 to 4851 Bq/m3 with an overall mean value of 153 Bq/m3. As expected, radon distribution is not uniform throughout Italy: in several regions high radon annual averages have been found, confirming previous surveys.The analysis of data shows a high variability among regions and intra-region but low spread among rooms belonging to the same workplace.About 5% of underground workplaces displayed radon concentration exceeding 400 Bq/m3, and the 4.4% exceeds 500 Bq/m3, the national action level for the exposure to natural radioactivity in workplaces.  相似文献   

12.
Radon entry from soil into indoor air and its accumulation indoors depends on several parameters, the values of which normally depend on the specific characteristics of the site. The effect of a specific parameter is often difficult to explain from the result of indoor radon measurements only. The adaptation of the RAGENA (RAdon Generation, ENtry and Accumulation indoors) model to a Swedish house to characterise indoor radon levels and the relative importance of the different radon sources and entry mechanisms is presented. The building is a single-zone house with a naturally-ventilated crawl space in one part and a concrete floor in another part, leading to different radon levels in the two parts of the building. The soil under the house is moraine, which is relatively permeable to radon gas. The house is naturally-ventilated. The mean indoor radon concentration values measured with nuclear track detectors in the crawl-space and concrete parts of the house are respectively 75±30 and 200±80 Bq m−3. Results of the model adaptation to the house indicate that soil constitutes the most relevant radon source in both parts of the house. The radon concentration values predicted by the model indoors fall into the same range as the experimental results.  相似文献   

13.
Radon was measured in soil-gas and groundwater in the Budhakedar area of Tehri Garhwal, India in summer and winter to obtain the seasonal variation and its correlation with radon exhalation rate. The environmental surface gamma dose rate was also measured in the same area. The radon exhalation rate in the soil sample collected from different geological unit of Budhakedar area was measured using plastic track detector (LR-115 type II) technique. The variation in the radon concentration in soil-gas was found to vary from 1098 to 31,776 Bq.m−3 with an average of 7456 Bq.m−3 in summer season and 3501 to 42883 Bq.m−3 with an average of 17148 Bq.m−3 in winter season. In groundwater, it was found to vary from 8 to 3047 Bq.l−1 with an average value 510 Bq.l−1 in summer and 26 to 2311 Bq.l−1 with an average value 433 Bq.L−1 in winter. Surface gamma dose rate in the study area varied from 32.4 to 83.6 μR.h−1 with an overall mean of 58.7 μ-R.h−1 in summer and 34.6 to 79.3 μR.h−1 with an average value 58.2 μR.h−1 in winter. Radon exhalation rate from collected soil samples was found to vary from 0.1 × 10−5 to 5.7 × 10−5 Bq.kg−1.h−1 with an average of 1.5 × 10−5 Bq.kg−1.h−1 in summer season and 1.7 × 10−5 to 9.6 × 10−5 Bq.kg−1.h−1 with an average of 5.5 × 10−5 Bq.kg−1.h−1. A weak negative correlation was observed between radon exhalation rate from soil and radon concentration in the soil. Radon exhalation rate from the soil was also not found to be correlated with the gamma dose rate, while it shows a positive correlation with radon concentration in water in summer season. Inter-correlations among various parameters are discussed in detail.   相似文献   

14.
ABSTRACT

Radon, thoron and associated progeny measurements have been carried out in 71 dwellings of Douala city, Cameroon. The radon–thoron discriminative detectors (RADUET) were used to estimate the radon and thoron concentration, while thoron progeny monitors measured equilibrium equivalent thoron concentration (EETC). Radon, thoron and thoron progeny concentrations vary from 31?±?1 to 436?±?12 Bq?m–3, 4?±?7 to 246?±?5 Bq?m–3, and 1.5?±?0.9 to 13.1?±?9.4 Bq?m–3. The mean value of the equilibrium factor for thoron is estimated at 0.11?±?0.16. The annual effective dose due to exposure to indoor radon and progeny ranges from 0.6 to 9?mSv?a–1 with an average value of 2.6?±?0.1?mSv?a–1. The effective dose due to the exposure to thoron and progeny vary from 0.3 to 2.9?mSv?a–1 with an average value of 1.0?±?0.4?mSv?a–1. The contribution of thoron and its progeny to the total inhalation dose ranges from 7 to 60?% with an average value of 26?%; thus their contributions should not be neglected in the inhalation dose assessment.  相似文献   

15.
An experimental study has been carried out in an inhabited single-family house. Radon concentration in the different rooms of the house and in its garden soil has been measured with Nuclear Track Detectors. No high differences of radon concentration have been observed between the different rooms of the house, so that the proximity of the room level to the soil seems not to affect the radon concentration. The annual radon concentration obtained indoors and in the soil has been respectively 35 Bq m−3 and 24 kBq m−3. Since radon generation in the source, entry into indoor air and accumulation indoors depend on several parameters, the effect of a specific parameter on indoor radon concentration is difficult to explain from the radon measurements only. The RAGENA (RAdon Generation, ENtry and Accumulation indoors) model has been adapted to the room in the basement of the house. The mean radon concentration values obtained with the model are compared to experimental results derived from measurements using Nuclear Track Detectors. The use of the model, together with the experimental study, has allowed characterising radon sources, levels and entry mechanisms in the house. The concrete walls have been found to be the most relevant radon source, while the contribution of the soil is negligible in this case. The indoor radon level is given by the balance of the permanent exhalation from concrete and the removal due to ventilation. The indoor radon levels are close to the average value for the Barcelona area which, in turn, is close to the world averaged value.  相似文献   

16.
Spatial and temporal variations of radon concentration in soil air   总被引:3,自引:0,他引:3  
The spatial and temporal variability of the soil gas radon concentration in typical soils is studied. The results obtained will be further used to predict indoor radon levels. To this end, 50 measuring points along geologic sections with known physicogeological parameters of soils were chosen. The soil gas radon concentration was measured with SSNTDs (Type III-b) at a depth of 70 cm from June to October, 2000. The radon exposure time was 72–96 h. The average radon concentration in the soil pore air for an urban area was 11 kBqm−3 (1.7–24 kBqm−3). Small-scale spatial variations in the concentration were found to lie within a narrower range. The effect of meteorological conditions on the soil gas radon concentration was investigated by performing 8 series of measurements at 5 closely spaced points in September–October, 2000. A significant correlation was found between the soil radon concentration and atmospheric pressure (K=−0.86), ambient temperature (K=0.75), and soil temperature (K=0.75).  相似文献   

17.
Uranium gets into drinking water when the minerals containing uranium are dissolved in groundwater. Uranium and radon concentrations have been measured in drinking water samples from different water sources such as hand pumps, tube wells and bore wells at different depths from various locations of four districts (Jind, Rohtak, Panipat and Sonipat) of Haryana, India, using the LED flourimetry technique and RAD7, electronic silicon solid state detector. The uranium (238U) and radon (222Rn) concentrations in water samples have been found to vary from 1.07 to 40.25?µg?L?1 with an average of 17.91?µg?L?1 and 16.06?±?0.97 to 57.35?±?1.28?Bq?L?1 with an average of 32.98?±?2.45?Bq?L?1, respectively. The observed value of radon concentration in 43 samples exceeded the recommended limits of 11?Bq?L?1 (USEPA) and all the values are within the European Commission recommended limit of 100?Bq?L?1. The average value of uranium concentration is observed to be within the safe limit recommended by World Health Organization (WHO) and Atomic Energy Regulatory Board. The annual effective dose has also been measured in all the water samples and is found to be below the prescribed dose limit of 100?µSv?y?1 recommended by WHO. Risk assessment of uranium in water is also calculated using life time cancer risk, life time average daily dose and hazard quotient. The high uranium concentration observed in certain areas is due to interaction of ground water with the soil formation of this region and the local subsurface geology of the region.  相似文献   

18.
Indoor radon concentrations have been measured for two consecutive half-year periods in a wide range of dwellings of some regions of Punjab and Haryana states. The objective was to find correlation between the variations of indoor radon levels with the sub-soil, local geology, type of building materials, etc. of the two regions. So keeping this in view the indoor radon measurements have been carried out in the dwellings of different villages around the Tusham ring complex, Bhiwani District, Haryana, known to be composed of acidic volcanics and the associated granites along with some villages of Amritsar District, Punjab. The indoor radon concentration in the dwellings around Tusham (Haryana) have been found to be varying from 120.5±95 to 915.2±233 Bq m−3, whereas it ranges from 60.0±37 to 235.6±96 Bq m−3 for the dwellings of Punjab. The 222Rn concentration observed at most of locations particularly around Tusham ring complex region is higher than that of all the villages studied in Punjab region. Local geology including embedded granitic rocks, sub-soil, etc. as well as building materials having higher radioactive content are the major contributors for the higher indoor radon levels observed in the dwelling around Tusham, where few dwellings have higher radon concentrations than the ICRP, 1993 recommendations. The annual effective dose equivalent has also been estimated for each location of the both regions, which has been found to be varying from 1.0 to 17.2 mSv/y.  相似文献   

19.
Indoor radon has been recognized as one of the health hazards for mankind. Building materials constitute the second most important source of radon in dwellings. The common building materials used in the construction of dwellings are studied for radon exhalation rate. The ‘Can’ technique using LR-115 type-II solid-state nuclear track detector has been used for these measurements. The radon exhalation rate in these samples varies from 4.75 m Bq m−2 h−1 (0.14 m Bq kg−1 h−1) for limestone to 506.76 m Bq m−2 h−1 (15.24 m Bq kg−1 h−1) for soil.  相似文献   

20.
Radium concentration and radon exhalation rate have been measured in soil samples collected from some areas belonging to upper Siwaliks of Kala Amb, Nahan and Morni Hills of Haryana and Himachal Pradesh states, India using LR-115 type II plastic track detectors. Uranium concentration has also been determined in these soil samples using fission track registration technique. Radium concentration has been found to vary from 5.30 to 31.71 Bq.kg−1, whereas uranium concentration varies from 33.21 to 76.26 Bq.kg−1. The radon exhalation rate in these samples varies from 216.87 to 1298.00 mBq.m−2hr−1 (6.15 to 36.80 mBq.kg−1.hr−1). Most of the samples have uranium concentration above the worldwide average concentration of 35 Bq.kg−1. A good correlation (R 2 = 0.76) has been observed between uranium concentration and radon exhalation rate in soil. The values of uranium, radium and radon exhalation rate in soil are compared with that from the adjoining areas of Punjab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号