首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The common way to obtain energies from Kohn-Sham exchange potentials is by using the Levy-Perdew virial relation. For potentials that are not functional derivatives (i.e., nearly all model exchange potentials in existence), this approach leads to energy expressions that lack translational and rotational invariance. We propose a method for constructing potential-based energy functionals that are free from these artifacts. It relies on the same line-integration technique that gives rise to the Levy-Perdew relation, but uses density scaling instead of coordinate scaling. The method is applicable to any exchange or correlation potential that depends on the density explicitly, and correctly recovers the parent energy functional from a functional derivative. To illustrate our approach we develop a properly invariant generalized gradient approximation for exchange starting from the model potential of van Leeuwen and Baerends.  相似文献   

2.
It is shown by the example of Slater's averaged exchange potential that a poor approximation to the optimized effective potential (OEP) can yield a deceptively accurate energy via the conventional Kohn-Sham energy functional. For a trial exchange potential to be correct, its Kohn-Sham energy must coincide with the value obtained by the Levy-Perdew virial relation. Significant discrepancies between Kohn-Sham and the virial exchange energies are found for self-consistent Slater, Becke-Johnson, and effective local potentials (ELPs); their relative magnitudes are used to argue that, as approximations to the exact-exchange OEP, ELPs are the most accurate. Virial energy discrepancies vanish for Yang-Wu OEPs when the orbital and auxiliary basis sets are balanced, and remain surprisingly small for oscillatory OEPs obtained with unbalanced basis sets.  相似文献   

3.
The local-density approximation of density functional theory (DFT) is remarkably accurate, for instance, for geometries and frequencies, and the generalized gradient approximations have also made bond energies quite reliable. Sometimes, however, one meets with failure in individual cases. One of the possible routes towards better functionals would be the incorporation of orbital dependence (which is an implicit density dependency) in the functionals. We discuss this approach both for energies and for response properties. One possibility is the use of the Hartree-Fock-type exchange energy expression as orbital-dependent functional. We will argue that in spite of the increasing popularity of this approach, it does not offer any advantage over Hartree-Fock for energies. We will advocate not to apply the separation of exchange and correlation, which is so ingrained in quantum chemistry, but to model both simultaneously. For response properties the energies and shapes of the virtual orbitals are crucial. We will discuss the benefits that Kohn-Sham potentials can offer which are derived from either an orbital-dependent energy functional, including the exact-exchange functional, or which can be obtained directly as orbital-dependent functional. We highlight the similarity of the Hartree-Fock and Kohn-Sham occupied orbitals and orbital energies, and the essentially different meanings the virtual orbitals and orbital energies have in these two models. We will show that these differences are beneficial for DFT in the case of localized excitations (in a small molecule or in a fragment), but are detrimental for charge-transfer excitations. Again, orbital dependency, in this case in the exchange-correlation kernel, offers a solution.  相似文献   

4.
Accurate and fast evaluation of electrostatic interactions in molecular systems is still one of the most challenging tasks in the rapidly advancing field of macromolecular chemistry, including molecular recognition, protein modeling and drug design. One of the most convenient and accurate approaches is based on a Buckingham-type approximation that uses the multipole moment expansion of molecular/atomic charge distributions. In the mid-1980s it was shown that the pseudoatom model commonly used in experimental X-ray charge density studies can be easily combined with the Buckingham-type approach for calculation of electrostatic interactions, plus atom-atom potentials for evaluation of the total interaction energies in molecular systems. While many such studies have been reported, little attention has been paid to the accuracy of evaluation of the purely electrostatic interactions as errors may be absorbed in the semiempirical atom-atom potentials that have to be used to account for exchange repulsion and dispersion forces. This study is aimed at the evaluation of the accuracy of the calculation of electrostatic interaction energies with the Buckingham approach. To eliminate experimental uncertainties, the atomic moments are based on theoretical single-molecule electron densities calculated at various levels of theory. The electrostatic interaction energies for a total of 11 dimers of alpha-glycine, N-acetylglycine and L-(+)-lactic acid structures calculated according to Buckingham with pseudoatom, stockholder and atoms-in-molecules moments are compared with those evaluated with the Morokuma-Ziegler energy decomposition scheme. For alpha-glycine a comparison with direct "pixel-by-pixel" integration method, recently developed Gavezzotti, is also made. It is found that the theoretical pseudoatom moments combined with the Buckingham model do predict the correct relative electrostatic interactions energies, although the absolute interaction energies are underestimated in some cases. The good agreement between electrostatic interaction energies computed with Morokuma-Ziegler partitioning, Gavezzotti's method, and the Buckingham approach with atoms-in-molecules moments demonstrates that reliable and accurate evaluation of electrostatic interactions in molecular systems of considerable complexity is now feasible.  相似文献   

5.
In the introductory section, we compare the total, kinetic, nuclear-electron, Coulomb, exchange, and correlation energies of ground-state atoms. From the analyses of the data, one can conclude that the Hartree-Fock (HF) model is notably good and might require only a small perturbation to become essentially an “accurate” model. For this reason and considering past literature, we present a semiempirical extension of the HF model. We start with a calibration of three independent models, each one with an effective Hamiltonian, which introduces a small perturbation on the kinetic, the nuclear-electron, or the Coulomb HF operators. The perturbations are expressed as very simple functions of products of orbital probability density. The three perturbations yield very equivalent results and the computed ground-state energies are reasonably near to the accurate nonrelativistic energies recently provided by E. Davidson and his collaborators for the 2–18 electron systems and the estimates by Clementi and his collaborators for the 19–54 electron systems. The first ionization potentials from He to Cs, the second ionization potentials from Li to Zn, and excitation energies for npn, 3dn, and 4s13dn configurations are used as additional verification and validation. The above three effective Hamiltonians are then combined in order to redistribute the correlation energy correction in a way which exactly satisfies the virial theorem and maintains the HF energy ratios between kinetic, nuclear-electron, and electron-electron interaction energies; the resulting effective Hamiltonian, named “virial constrained,” yields good quality data comparable to those obtained from the three independent effective operators. Concerning excitation energies, these effective Hamiltonians yield values only in modest agreement with experimental data, even if definitively superior to HF computations. To further improve the computed excitation energies, we applied an empirical scaling in the vector coupling coefficient; this correction yields very reasonable excitations for all the configurations that we have considered. We conclude that the use of effective potentials to introduce small perturbations density-dependent onto the HF model constitutes a broad class of practical and reliable semiempirical solutions to atomic many-electron problems, can provide an alternative to popular proposals from density functional theory, and should prepare the ground for “generalized HF models.” © 1997 John Wiley & Sons, Inc. Int J Quant Chem 62: 571–591, 1997  相似文献   

6.
This paper clarifies why long-range corrected (LC) density functional theory gives orbital energies quantitatively. First, the highest occupied molecular orbital and the lowest unoccupied molecular orbital energies of typical molecules are compared with the minus vertical ionization potentials (IPs) and electron affinities (EAs), respectively. Consequently, only LC exchange functionals are found to give the orbital energies close to the minus IPs and EAs, while other functionals considerably underestimate them. The reproducibility of orbital energies is hardly affected by the difference in the short-range part of LC functionals. Fractional occupation calculations are then carried out to clarify the reason for the accurate orbital energies of LC functionals. As a result, only LC functionals are found to keep the orbital energies almost constant for fractional occupied orbitals. The direct orbital energy dependence on the fractional occupation is expressed by the exchange self-interaction (SI) energy through the potential derivative of the exchange functional plus the Coulomb SI energy. On the basis of this, the exchange SI energies through the potential derivatives are compared with the minus Coulomb SI energy. Consequently, these are revealed to be cancelled out only by LC functionals except for H, He, and Ne atoms.  相似文献   

7.
Exploratory variational pseudopotential density functional calculations are performed for the electronic properties of many‐electron systems in the 3D cartesian coordinate grid (CCG). The atom‐centered localized gaussian basis set, electronic density, and the two‐body potentials are set up in the 3D cubic box. The classical Hartree potential is calculated accurately and efficiently through a Fourier convolution technique. As a first step, simple local density functionals of homogeneous electron gas are used for the exchange‐correlation potential, while Hay‐Wadt‐type effective core potentials are employed to eliminate the core electrons. No auxiliary basis set is invoked. Preliminary illustrative calculations on total energies, individual energy components, eigenvalues, potential energy curves, ionization energies, and atomization energies of a set of 12 molecules show excellent agreement with the corresponding reference values of atom‐centered grid as well as the grid‐free calculation. Results for three atoms are also given. Combination of CCG and the convolution procedure used for classical Coulomb potential can provide reasonably accurate and reliable results for many‐electron systems. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

8.
In order to obtain efficient basis sets for the evaluation of van der Waals complex intermolecular potentials, we carry out systematic basis set studies. For this, interaction energies at representative geometries on the potential energy surfaces are evaluated using the CCSD(T) correlation method and large polarized LPol‐n and augmented polarization‐consistent aug‐pc‐2 basis sets extended with different sets of midbond functions. On the basis of the root mean square errors calculated with respect to the values for the most accurate potentials available, basis sets are selected for fitting the corresponding interaction energies and getting analytical potentials. In this work, we study the Ne–N2 van der Waals complex and after the above procedure, the aug‐pc‐2–3321 and the LPol‐ds‐33221 basis set results are fitted. The obtained potentials are characterized by T‐shaped global minima at distances between the Ne atom and the N2 center of mass of 3.39 Å, with interaction energies of ?49.36 cm?1 for the aug‐pc‐2–3321 surface and ?50.28 cm?1 for the LPol‐ds‐33221 surface. Both sets of results are in excellent agreement with the reference surface. To check the potentials further microwave transition frequencies are calculated that agree well with the experimental and the aV5Z‐33221 values. The success of this study suggests that it is feasible to carry out similar accurate calculations of interaction energies and ro‐vibrational spectra at reduced cost for larger complexes than has been possible hitherto. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The improved virtual orbital-complete active space configuration interaction (IVO-CASCI) method is applied to determine the geometries of the ground state of free-base porphin and its metal derivatives, magnesium and zinc porphyrins. The vertical excitation energies and ionization potentials are computed at these optimized geometries using an IVO-based version of multireference Mo?ller-Plesset (IVO-MRMP) perturbation theory. The geometries and excitation energies obtained from the IVO-CASCI and IVO-MRMP methods agree well with experiment and with other correlated many-body methods. We also provide the ground state vibrational frequencies for free-base porphin and Mg-porphyrin. All frequencies are real in contrast to self-consistent field treatments which yield an imaginary frequency. Ground state normal mode frequencies (scaled) of free-base porphin and magnesium porphyrin from IVO-CASCI and complete active space self-consistent field methods are quite similar and are consistent with Becke-Slater-Hartree-Fock exchange and Lee-Yang-Parr correlation density functional theory calculations and with experiment. In addition, geometries are determined for low-lying excited state triplets and for positive ion states of the molecules. To our knowledge, no prior experimental and theoretical data are available for these excited state geometries of magnesium and zinc porphyrins. Given that the IVO-CASCI and IVO-MRMP computed geometries and excitation energies agree favorably with experiment and with available theoretical data, our predicted excited state geometries should be equally accurate.  相似文献   

10.
Heimdal J  Kaukonen M  Srnec M  Rulí?ek L  Ryde U 《Chemphyschem》2011,12(17):3337-3347
We used two theoretical methods to estimate reduction potentials and acidity constants in Mn superoxide dismutase (MnSOD), namely combined quantum mechanical and molecular mechanics (QM/MM) thermodynamic cycle perturbation (QTCP) and the QM/MM-PBSA approach. In the latter, QM/MM energies are combined with continuum solvation energies calculated by solving the Poisson-Boltzmann equation (PB) or by the generalised Born approach (GB) and non-polar solvation energies calculated from the solvent-exposed surface area. We show that using the QTCP method, we can obtain accurate and precise estimates of the proton-coupled reduction potential for MnSOD, 0.30±0.01 V, which compares favourably with experimental estimates of 0.26-0.40 V. However, the calculated potentials depend strongly on the DFT functional used: The B3LYP functional gives 0.6 V more positive potentials than the PBE functional. The QM/MM-PBSA approach leads to somewhat too high reduction potentials for the coupled reaction and the results depend on the solvation model used. For reactions involving a change in the net charge of the metal site, the corresponding results differ by up to 1.3 V or 24 pK(a) units, rendering the QM/MM-PBSA method useless to determine absolute potentials. However, it may still be useful to estimate relative shifts, although the QTCP method is expected to be more accurate.  相似文献   

11.
12.
In the recent study, the authors have proposed an integral equation for solving the inverse Kohn–Sham problem. In the present paper, the integral equation is numerically solved for one-dimensional model of a He atom and an H2 molecule in the electronic ground states. For this purpose, we propose an iterative solution algorithm avoiding the inversion of the kernel of the integral equation. To quantify the numerical accuracy of the calculated exchange-correlation potentials, we evaluate the exchange and correlation energies based on the virial theorem as well as the reproduction of the exact ground-state electronic energy. The results demonstrate that the numerical solutions of our integral equation for the inverse Kohn–Sham problem are accurate enough in reproducing the Kohn–Sham potential and in satisfying the virial theorem.  相似文献   

13.
14.
The recently proposed CAM-B3LYP exchange-correlation energy functional, based on a partitioning of the r operator in the exchange interaction into long- and short-range components, is assessed for the determination of molecular thermochemistry, structures, and second order response properties. Rydberg and charge transfer excitation energies and static electronic polarisabilities are notably improved over the standard B3LYP functional; classical reaction barriers also improve. Ionisation potentials, bond lengths, NMR shielding constants and indirect spin-spin coupling constants are comparable with the two functionals. CAM-B3LYP atomisation energies and diatomic harmonic vibrational wavenumbers are less accurate than those of B3LYP. Future research directions are outlined.  相似文献   

15.
Total intermolecular interaction energies are determined with a first version of the Gaussian electrostatic model (GEM-0), a force field based on a density fitting approach using s-type Gaussian functions. The total interaction energy is computed in the spirit of the sum of interacting fragment ab initio (SIBFA) force field by separately evaluating each one of its components: electrostatic (Coulomb), exchange repulsion, polarization, and charge transfer intermolecular interaction energies, in order to reproduce reference constrained space orbital variation (CSOV) energy decomposition calculations at the B3LYP/aug-cc-pVTZ level. The use of an auxiliary basis set restricted to spherical Gaussian functions facilitates the rotation of the fitted densities of rigid fragments and enables a fast and accurate density fitting evaluation of Coulomb and exchange-repulsion energy, the latter using the overlap model introduced by Wheatley and Price [Mol. Phys. 69, 50718 (1990)]. The SIBFA energy scheme for polarization and charge transfer has been implemented using the electric fields and electrostatic potentials generated by the fitted densities. GEM-0 has been tested on ten stationary points of the water dimer potential energy surface and on three water clusters (n = 16,20,64). The results show very good agreement with density functional theory calculations, reproducing the individual CSOV energy contributions for a given interaction as well as the B3LYP total interaction energies with errors below kBT at room temperature. Preliminary results for Coulomb and exchange-repulsion energies of metal cation complexes and coupled cluster singles doubles electron densities are discussed.  相似文献   

16.
Close-coupling calculations of the resonance and near resonance charge exchange in ion-atom collisions of Be at low and intermediate energies are presented. Accurate ab initio calculations are carried out of the Born-Oppenheimer potentials and the non-adiabatic couplings that are due to the finite nuclear masses and drive the near resonance charge exchange. We show that the near resonance charge exchange cross section follows Wigner's threshold law of inelastic processes for energies below 10(-8) eV and that the zero temperature rate constant for it is 4.5 × 10(-10) cm(3) s(-1). At collision energies much larger than the isotope shift of the ionization potentials of the atoms, we show that the near resonance charge exchange process is equivalent to the resonance charge exchange with cross sections having a logarithmic dependence. We also investigate the perturbation to the charge exchange process due to the non-adiabatic interaction to an electronic excited state. We show that the influence is negligible at low temperatures and still small at intermediate energies despite the presence of resonances.  相似文献   

17.
Optimization of the Hamiltonian dielectric solvent (HADES) method for biomolecular simulations in a dielectric continuum is presented with the goal of calculating accurate absolute solvation free energies while retaining the model’s accuracy in predicting conformational free‐energy differences. The solvation free energies of neutral and polar amino acid side‐chain analogs calculated by using HADES, which may optionally include nonpolar contributions, were optimized against experimental data to reach a chemical accuracy of about 0.5 kcal mol?1. The new parameters were evaluated for charged side‐chain analogs. The HADES results were compared with explicit‐solvent, generalized Born, Poisson–Boltzmann, and QM‐based methods. The potentials of mean force (PMFs) between pairs of side‐chain analogs obtained by using HADES and explicit‐solvent simulations were used to evaluate the effects of the improved parameters optimized for solvation free energies on intermolecular potentials.  相似文献   

18.
Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.  相似文献   

19.
Summary The solution of the Schrödinger equation for diatomic molecules when the finite element method is used gives the possibility to evaluate highly accurate basis-independent potential energy curves. In this work such types of numerically accurate potential energy curves on the HF level have been evaluated for Li2, Na2 and K2 and could be used as benchmarks in the optimization of basis sets. A comparison between recent LCAO HF calculations in which extended basis sets are used and the accurate values determined in this work show that there is a difference in total energy of 4×10–5 and 10–3 a.u. for Li, Li2, and Na, Na2, respectively. Evaluated dissociation energies are, however, due to the cancellation of numerical errors in much better agreement. Further, it is found that different exchange correlation potentials for the heavier molecules such as those given by von Barth-Hedin and Vosko, Wilk and Nusair reproduce experimental properties such as dissociation energies, vibrational frequencies almost as well as those achieved with advanced CI methods. TheX potential gives accurate bond lengths for Na2 and K2, whereas the dissociation energies are too small.  相似文献   

20.
Integral forms of the virial theorem in the density functional theory are derived. A relationship between the orbital energy sum and the integral of the pressure is studied. A new form of the regional virial theorem and the regional analogue of the Levy-Perdew relation are obtained. Local density approximation to the regional virial theorem is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号