首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Local measurements on bipartite maximally entangled states can yield correlations that are maximally nonlocal, monogamous, and with fully random outcomes. This makes these states ideal for bipartite cryptographic tasks. Genuine-multipartite nonlocality constitutes a stronger notion of nonlocality in the multipartite case. Maximal genuine-multipartite nonlocality, monogamy, and random outcomes are thus highly desired properties for genuine-multipartite cryptographic scenarios. We prove that local measurements on any Greenberger-Horne-Zeilinger state can produce correlations that are fully genuine-multipartite nonlocal, monogamous, and with fully random outcomes. A key ingredient in our proof is a multipartite chained Bell inequality detecting genuine-multipartite nonlocality, which we introduce. Finally, we discuss applications to device-independent secret sharing.  相似文献   

2.
While it has recently been demonstrated how to certify the maximal amount of randomness from any pure two-qubit entangled state in a device-independent way, the problem of optimal randomness certification from entangled states of higher local dimension remains open. Here we introduce a method for device-independent certification of the maximal possible amount of 2log23 random bits using pure bipartite entangled two-qutrit states and extremal nine-outcome general non-projective measurements. To this aim, we exploit a device-independent method for certification of the full Weyl–Heisenberg basis in three-dimensional Hilbert spaces together with a one-sided device-independent method for certification of two-qutrit partially entangled states.  相似文献   

3.
By using the Born Markovian master equation, we study the relationship among the Einstein–Podolsky–Rosen (EPR) steering, Bell nonlocality, and quantum entanglement of entangled coherent states (ECSs) under decoherence. We illustrate the dynamical behavior of the three types of correlations for various optical field strength regimes. In general, we find that correlation measurements begin at their maximum and decline over time. We find that quantum steering and nonlocality behave similarly in terms of photon number during dynamics. Furthermore, we discover that ECSs with steerability can violate the Bell inequality, and that not every ECS with Bell nonlocality is steerable. In the current work, without the memory stored in the environment, some of the initial states with maximal values of quantum steering, Bell nonlocality, and entanglement can provide a delayed loss of that value during temporal evolution, which is of interest to the current study.  相似文献   

4.
郭红 《物理学报》2015,64(22):220301-220301
量子关联是量子信息、量子计算与量子计量领域的重要资源, 在量子纠缠和贝尔非局域性中, 两子系统起着同等关键的作用, Einstein-Podolsky-Rosen (EPR)量子引导关联的强度介于量子纠缠和贝尔非局域性之间, 对单向EPR量子引导关联而言两子系统的作用不对等. 本文研究了双模Bose-Hubbard模型中模间量子关联的动态特性, 揭示了EPR量子引导关联的取向对系统初态模间交换对称性的依赖关系. 根据Hillery-Zubairy纠缠判据以及基于最大平均量子Fisher信息的纠缠判据考察了系统初态对模间量子纠缠演化规律的影响. 如果模间耦合强度远大于同一势阱内粒子间的相互作用, 初始处于SU(2)相干态的系统在具有确定的两子系统交换对称性的条件下, 其量子关联呈现简单的周期性演化规律; 当这种对称性破缺时, 模间量子关联的演化呈现较复杂的崩塌与回复现象.  相似文献   

5.
States with private correlations but little or no distillable entanglement were recently reported. Here, we consider the secure distribution of such states, i.e., the situation when an adversary gives two parties such states and they have to verify privacy. We present a protocol which enables the parties to extract from such untrusted states an arbitrarily long and secure key, even though the amount of distillable entanglement of the untrusted states can be arbitrarily small.  相似文献   

6.
We have studied the analytical Markovian and non-Markovian dynamics of quantum correlations, such as entanglement, quantum discord and Bell nonlocalities for three noisy qubits. Quantum correlation as measured by quantum discord is found to be immune to death contrary to entanglement and Bell nonlocality for initial GHZ- or W-type mixed states.  相似文献   

7.
We devise a protocol in which general nonclassical multipartite correlations produce a physically relevant effect, leading to the creation of bipartite entanglement. In particular, we show that the relative entropy of quantumness, which measures all nonclassical correlations among subsystems of a quantum system, is equivalent to and can be operationally interpreted as the minimum distillable entanglement generated between the system and local ancillae in our protocol. We emphasize the key role of state mixedness in maximizing nonclassicality: Mixed entangled states can be arbitrarily more nonclassical than separable and pure entangled states.  相似文献   

8.
We show that the rich structure of multipartite entanglement can be tested following a device-independent approach. Specifically we present Bell inequalities for distinguishing between different types of multipartite entanglement, without placing any assumptions on the measurement devices used in the protocol, in contrast with usual entanglement witnesses. We first address the case of three qubits and present Bell inequalities that can be violated by W states but not by Greenberger-Horne-Zeilinger states, and vice versa. Next, we devise 'subcorrelation Bell inequalities' for any number of parties, which can provably not be violated by a broad class of multipartite entangled states (generalizations of Greenberger-Horne-Zeilinger states), but for which violations can be obtained for W states. Our results give insight into the nonlocality of W states. The simplicity and robustness of our tests make them appealing for experiments.  相似文献   

9.
We establish a framework which allows one to construct novel schemes for measurement-based quantum computation. The technique develops tools from many-body physics-based on finitely correlated or projected entangled pair states-to go beyond the cluster-state based one-way computer. We identify resource states radically different from the cluster state, in that they exhibit nonvanishing correlations, can be prepared using nonmaximally entangling gates, or have very different local entanglement properties. In the computational models, randomness is compensated in a different manner. It is shown that there exist resource states which are locally arbitrarily close to a pure state. We comment on the possibility of tailoring computational models to specific physical systems.  相似文献   

10.
韩伟  张英杰  夏云杰 《中国物理 B》2013,22(1):10306-010306
Using the pseudomode method, we theoretically analyze the creation of quantum correlations between two two-level dipole-dipole interacting atoms coupled with a common structured reservoir with different coupling strengths. Considering certain classes of initial separable-mixed states, we demonstrate that the sudden birth of atomic entanglement as well as the generation of stationary quantum correlations occur. Our results also suggest a possible way to control the occurrence time of entanglement sudden birth and the stationary value of quantum correlations by modifying the initial conditions of states, the dipole-dipole interaction, and the relative coupling strength. These results are helpful for the experimental engineering of entanglement and quantum correlations.  相似文献   

11.
Measurement-induced nonlocality   总被引:1,自引:0,他引:1  
Luo S  Fu S 《Physical review letters》2011,106(12):120401
We interpret the maximum global effect caused by locally invariant measurements as measurement-induced nonlocality, which is in some sense dual to the geometric measure of quantum discord [Dakic, Vedral, and Brukner, Phys. Rev. Lett. 105, 190502 (2010)]. We quantify measurement-induced nonlocality from a geometric perspective in terms of measurements, and obtain analytical formulas for any dimensional pure states and 2 × n dimensional mixed states. We further derive a tight upper bound to measurement-induced nonlocality in general case. The physical significance of measurement-induced nonlocality is discussed in the context of correlations, entanglement, quantumness, and cryptographic communication.  相似文献   

12.
By using geometric quantum discord and measurement-induced nonlocality, quantum correlations are investigated for two superconducting (SC) charge qubits that share a large Josephson junction where the field is assumed to be prepared initially in a coherent state. It is found that the difference between measure measurement-induced nonlocality and geometric quantum discord, of the final state of the two SC-charge qubits system which is especial case of X-states, is equal to a constant value. It is found that the quantum correlations and entanglement of the qubits are very sensitive to the mean number of the coherent photons. The entanglement exists in small intervals of death quantum discord and measurement-induced nonlocality. This is further evidence in support of the fact that quantum correlation and entanglement are not synonymous.  相似文献   

13.
Steering is a form of quantum nonlocality that is intimately related to the famous Einstein-Podolsky-Rosen (EPR) paradox that ignited the ongoing discussion of quantum correlations. Within the hierarchy of nonlocal correlations appearing in nature, EPR steering occupies an intermediate position between Bell nonlocality and entanglement. In continuous variable systems, EPR steering correlations have been observed by violation of Reid's EPR inequality, which is based on inferred variances of complementary observables. Here we propose and experimentally test a new criterion based on entropy functions, and show that it is more powerful than the variance inequality for identifying EPR steering. Using the entropic criterion our experimental results show EPR steering, while the variance criterion does not. Our results open up the possibility of observing this type of nonlocality in a wider variety of quantum states.  相似文献   

14.
Aspects of Generic Entanglement   总被引:4,自引:4,他引:0  
We study entanglement and other correlation properties of random states in high-dimensional bipartite systems. These correlations are quantified by parameters that are subject to the ``concentration of measure' phenomenon, meaning that on a large-probability set these parameters are close to their expectation. For the entropy of entanglement, this has the counterintuitive consequence that there exist large subspaces in which all pure states are close to maximally entangled. This, in turn, implies the existence of mixed states with entanglement of formation near that of a maximally entangled state, but with negligible quantum mutual information and, therefore, negligible distillable entanglement, secret key, and common randomness. It also implies a very strong locking effect for the entanglement of formation: its value can jump from maximal to near zero by tracing over a number of qubits negligible compared to the size of the total system. Furthermore, such properties are generic. Similar phenomena are observed for random multiparty states, leading us to speculate on the possibility that the theory of entanglement is much simplified when restricted to asymptotically generic states. Further consequences of our results include a complete derandomization of the protocol for universal superdense coding of quantum states.  相似文献   

15.
Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlations of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.  相似文献   

16.
Similar to device-independent quantum key distribution(DI-QKD), semi-device-independent quantum key distribution(SDI-QKD) provides secure key distribution without any assumptions about the internal workings of the QKD devices.The only assumption is that the dimension of the Hilbert space is bounded. But SDI-QKD can be implemented in a oneway prepare-and-measure configuration without entanglement compared with DI-QKD. We propose a practical SDI-QKD protocol with four preparation states and three measurement bases by considering the maximal violation of dimension witnesses and specific processes of a QKD protocol. Moreover, we prove the security of the SDI-QKD protocol against collective attacks based on the min-entropy and dimension witnesses. We also show a comparison of the secret key rate between the SDI-QKD protocol and the standard QKD.  相似文献   

17.
Entanglement is a useful resource because some global operations cannot be locally implemented using classical communication. We prove a number of results about what is and what is not locally possible. We focus on orthogonal states, which can always be globally distinguished. We establish the necessary and sufficient conditions for a general set of 2 x 2 quantum states to be locally distinguishable, and for a general set of 2 x n quantum states to be distinguished given an initial measurement of the qubit. These results reveal a fundamental asymmetry to nonlocality, which is the origin of "nonlocality without entanglement," and we present a very simple proof of this phenomenon.  相似文献   

18.
Single-particle entanglement refers to entanglement produced with a single particle. It can be generated by illuminating a beam splitter with a single photon. We describe experimental schemes to realize quantum teleportation and quantum key distribution utilizing single-particle entanglement, and discuss the strengths and drawbacks of the schemes compared with the standard scheme utilizing two-photon polarization states. We show, in particular, that the quantum key distribution scheme based on single-particle entanglement is associated with a relatively high value of the bits of information transferred per particle sent and can thus be cost effective.  相似文献   

19.
We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in n different and noninteracting cavities, all of which were initially prepared in a maximally correlated state of n qubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deaths and nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.  相似文献   

20.
We experimentally demonstrate observation of highly pure four-photon GHZ entanglement produced by parametric down-conversion and a projective measurement. At the same time this also demonstrates teleportation of entanglement with very high purity. Not only does the achieved high visibility enable various novel tests of quantum nonlocality, it also opens the possibility to experimentally investigate various quantum computation and communication schemes with linear optics. Our technique can, in principle, be used to produce entanglement of arbitrarily high order or, equivalently, teleportation and entanglement swapping over multiple stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号