首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report geometries and vertical excitation energies for the red and green chromophores of the DsRed.M1 protein in the gas phase and in the solvated protein environment. Geometries are optimized using density functional theory (DFT, B3LYP functional) for the isolated chromophores and combined quantum mechanical/molecular mechanical (QM/MM) methods for the protein (B3LYP/MM). Vertical excitation energies are computed using DFT/MRCI, OM2/MRCI, and TDDFT as QM methods. In the case of the red chromophore, there is a general blue shift in the excitation energies when going from the isolated chromophore to the protein, which is caused both by structural changes and by electrostatic interactions with the environment. For the lowest ππ* transition, these two factors contribute to a similar extent to the overall DFT/MRCI shift of 0.4 eV. An enlargement of the QM region to include active‐site residues does not change the DFT/MRCI excitation energies much. The DFT/MRCI results are closest to experiment for both chromophores. OM2/MRCI and TDDFT overestimate the first vertical excitation energy by 0.3–0.5 and 0.2–0.4 eV, respectively, relative to the experimental or DFT/MRCI values. The experimental gap of 0.35 eV between the lowest ππ* excitation energies of the red (cis‐acylimine) and green (trans‐peptide) forms is well reproduced by DFT/MRCI and TDDFT (0.32 and 0.37 eV, respectively). A histogram spectrum for an equal mixture of the two forms, generated by OM2/MRCI calculations on 450 snapshots along molecular dynamics trajectories, matches the experimental spectrum quite well, with a gap of 0.23 eV and an overall blue shift of about 0.3 eV. DFT/MRCI appears as an attractive choice for calculating excitation energies in fluorescent proteins, without the shortcomings of TDDFT and computationally more affordable than CASSCF‐based approaches. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

2.
In this paper, the ground and excited states of N2O2 were studied at the multireference configuration interaction (MRCI) level of theory with Dunning's [J. Chem. Phys. 90, 1007 (1985); 96, 6796 (1992)] correlation consistent basis sets augo-cc-pVDZ and aug-cc-pVTZ. The geometry optimizations were performed for the ground state of N2O2. The vertical excitation energies and transition moments were calculated for the low-lying singlet states of N2O2 including the lowest three 1A1 states, two 1B1 states, one 1B2 state, and two 1A2 states at the MRCI level of theory with Dunning's correlation consistent basis sets aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ. Furthermore, for the first time, the potential energy curves were calculated at the complete active space self-consistent-field and MRCI levels of theory for as many as 12 N2O2 singlet electronic states along the N-N distance. The dissociation asymptotes of these 12 N2O2 singlet electronic states were discussed.  相似文献   

3.
In this work, three forms (cis, trans and nonplanar) of ClOBrO and BrOClO were optimized at CCSD(T)/cc‐pVTZ level of theory. At the most stable forms (nonplanar form) of ClOBrO and BrOClO, the vertical excitation energies for the lowest six singlet states and two triplet states were calculated at the multireference internally contracted configuration interaction (MRCI) level of theory using cc‐pVDZ, Aug‐cc‐pVDZ, cc‐pVTZ, and Aug‐cc‐pVTZ basis sets. The scalar relativistic effect on the excited states of BrOClO and ClOBrO were estimated. In addition, the potential energy curves of the lowest six singlet states and two triplet states of BrOClO and ClOBrO, as well as BrOOCl were calculated at both MCSCF (complete active space self‐consistent field) and MRCI levels of theory using Aug‐cc‐pVDZ basis set on the active space (18e,12o) along the distances of BrO? ClO, ClO? BrO, and BrO? OCl. The results were compared among BrOOCl, ClOBrO, and BrOClO. The first singlet excited state of BrOOCl is 1.12 eV higher than that of BrOClO and 1.36 eV higher than that of ClOBrO at MRCI/cc‐pVTZ level of theory. The first triplet excited state of BrOOCl is 0.77 eV higher than that of BrOClO and 0.86 eV higher than that of ClOBrO at MRCI/cc‐pVTZ level of theory. Most of the excited states of BrOClO studied in this work are unbound states; but most of the ClOBrO and BrOOCl excited states studied in this work are weakly bound states at MRCI level of theory. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

4.
Using density functional theory at the BPW916-311+G(3df) level, optimized geometries and energies of the lowest singlet, triplet, and quintet A(1), A(2), B(1), B(2)(C(2v)) states of the TiO(2) molecule were obtained. TiO(2) has a (1)A(1) ground state in C(2v) symmetry. Adiabatic excitation energies of the low-lying singlet and triplet states range from 2.1 to 3.0 eV. The (1,3)A(2) states optimize at bond angles of about 140 degrees , lying only 0.06 eV below linear (1,3)Delta(u), whereas (1,3)B(1) and (1,3)B(2), with bond angles of 120 degrees and 96 degrees , respectively, lie 0.3-0.4 eV below the respective (1,3)Pi(u) or (1,3)Delta(u) states. Minima with short O-O distances of approximately 1.46 A, at energies of 4.2 and 4.7 eV, were found for (1)A(1) and (3)A(1). The C(2v) minima of the lowest (1)B(1) and (3)B(1) states are saddle points, suggesting lower-energy structures in C(s) symmetry. The C(2v) quintet states start at energies of 5.7 eV. Multireference configuration interaction (MRCI) methods, employing a polarized valence triple-zeta basis set, lead to similar geometries and energies. MRCI vertical excitation energies up to 4.6 eV and oscillator strengths are given. The calculated excitation energy of 2.2 eV for (1)B(2) agrees well with 2.3 eV from a fluorescence spectrum. The vertical electron detachment energy of TiO(2) (-) is 1.5 eV, in good agreement with 1.6 eV from anion photoelectron spectroscopy. An observed second photoelectron band corresponds to (1)B(2) and/or (3)B(2), but the assignment of a third band could not be verified. Vibrational frequencies, ionization energies, electron affinities, and dissociation energies are given.  相似文献   

5.
Correlation effects in the π-electron system of models for diacetylenic systems have been investigated. Although doubly excited configuratons are important, the correlation correction is smaller than in the corresponding polyenes: the 1Ag-like excited state is above the 1Bu-like state. In-plane double-bonding orbitals mix significantly with the π excitations.  相似文献   

6.
Various electronically excited states of pyrrole have been studied by ab initio SCF and CI calculations including π → π* and π → Rydberg excitations. Optically allowed valence type transitions are found at energies higher than 6.5 eV whereas all the lower singlet states are of Rydberg type. In addition to the experimentally known triplet states at 4.23 and 5.10 eV, several new triplet transitions with energies from 5.71 to 7.10 eV are predicted. In most cases good agreement with experimental data is found.  相似文献   

7.
A benchmark set of 28 medium-sized organic molecules is assembled that covers the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. Vertical excitation energies and one-electron properties are computed for the valence excited states of these molecules using both multiconfigurational second-order perturbation theory, CASPT2, and a hierarchy of coupled cluster methods, CC2, CCSD, and CC3. The calculations are done at identical geometries (MP26-31G*) and with the same basis set (TZVP). In most cases, the CC3 results are very close to the CASPT2 results, whereas there are larger deviations with CC2 and CCSD, especially in singlet excited states that are not dominated by single excitations. Statistical evaluations of the calculated vertical excitation energies for 223 states are presented and discussed in order to assess the relative merits of the applied methods. CC2 reproduces the CC3 reference data for the singlets better than CCSD. On the basis of the current computational results and an extensive survey of the literature, we propose best estimates for the energies of 104 singlet and 63 triplet excited states.  相似文献   

8.
The ground-state geometries and excited singlet and lowest triplet energies of polyacenes from benzene through nonacene are predicted with B3LYP/6-31G* calculations and compared to experimental data where available. The results are compared to these data for cyclacenes and polyenes. The polyacenes and cyclacenes have geometries consisting of two fully delocalized nonalternating ribbons joined by relatively long bonds. Polyacenes are predicted to have smaller band gaps than the corresponding polyenes and triplet ground states for nine or more benzene rings. The fully delocalized nonalternating nature of polyacenes differs from the bond alternation resulting from Peierls distortion in polyenes. The differences are rationalized in terms of a simple MO model, and the results are compared to extensive prior theoretical work in the literature. Predictions about the electronic structure of analogues containing polyacene units are made.  相似文献   

9.
A systematic study of the electronic excited states of nitroethylene (C2H3NO2) was carried out using the approximate coupled‐cluster singles‐and‐doubles approach with the resolution of the identity (RI‐CC2), the time dependent density functional theory with the CAMB3LYP functional (TDDFT/CAMB3LYP) and the DFT multireference configuration interaction (DFT/MRCI) method. Vertical transition energies and optical oscillator strengths were computed for a maximum of 20 singlet transitions. Semiclassical simulations of the ultraviolet (UV) spectra were performed at the RI‐CC2 and DFT/MRCI levels. The main features in the UV spectrum were assigned to a weak n‐π* transition, and two higher energy πCC+O‐π* bands. These characteristics are common to molecules containing NO2 groups. Simulated spectra are in good agreement with the experimental spectrum. The energy of the bands in the DFT/MRCI simulation agrees quite well with the experiment, although it overestimates the band intensities. RI‐CC2 produced intensities comparable to the experiment, but the bands were blue shifted. A strong πCC+O‐π* band, not previously measured, was found in the 8–9 eV range. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

10.
Reported experimental evidence of the relative position of the first two excited electronic states in linear polyenes was carefully examined and compared with that derived from time dependent density functional theory (TDDFT) theoretical calculations performed at the B3LYP level on optimized geometries. The energy values for the first two triplet states 3Bu and 3Ag, obtained from TDDFT calculations, were found to be highly strongly correlated with the experimental values. Also, the theoretical calculations for the electronic transition 1 1Ag --> 1 1Bu were also extremely well correlated with their experimental counterparts; even more important, the three reported experimental data for 1 1Ag --> 2 1Ag transitions in these systems conformed to the correlation for the TDDFT 1 1Ag --> 1 1Bu transition. The first excited electronic state in the linear polyenes studied (from ethene to the compound consisting of 40 ethene units, P40) was found to be 1Bu. The energy gap between the excited states 2 1Ag and 1 1Bu decreased with increasing length of the polyene chain, but not to the extent required to cause inversion, at least up to P40. In the all-trans linear polyenes studied, the widely analyzed energy gap from the ground electronic state to the first excited singlet state for infinitely long chains may be meaningless as, even in P40, it is uncertain whether the ground electronic state continues to be a singlet.  相似文献   

11.
The π-electronic structures of the ground state of linear and highly branched polyenes with up to 80 π-electrons are calculated with particular reference to the alternation of the bond orders. The MO methods adopted are HMO, PPP , variable-β, γ, and its improved version. The effect of the electron correlation through singly and doubly excited configurations is estimated with a second-order perturbation calculation. The calculated bond orders systematically vary with the degree of approximation used. Most of the bond order values can be grouped into either a single or double bond region. In certain series of highly branched polyenes the bond orders of double and single bonds at the root of branching, respectively, get smaller and larger as the size of the molecule increases and sometimes their difference gets diminishingly small. The origin of these abnormal bond orders is discussed in terms of the π-electron flow networks.  相似文献   

12.
VE-PPP, CNDO/2, and CNDO/s-CI methods have been used to investigate the electronic spectrum and structure of benzaldehyde. Electronic charge distributions and bond orders in the ground and lowest excited singlet π* ← π and π* ← n states of the molecule have been studied. The molecule has been shown to be nonplanar in the lowest π* ← n excited singlet state, in agreement with the conclusions drawn from the study of vibrational spectra. Dipole moments in both excited states have been shown to be larger than the ground-state value. Thus, the ambiguity in the experimental result for the π* ← π n excited singlet state dipole moment has been resolved. It has been shown that the n orbital is mainly localized on the CHO group. Furthermore, charge distributions, dipole moments, and molecular geometries are shown to be very different in the excited singlet π* ← π and π* ← n states.  相似文献   

13.
MCSCF and MRCI calculations on the first three singlet states of trans-1,3-butadiene are presented. Flexible basis sets were applied and full geometry optimization was carried out at the MCSCF level for planar and selected non-planar structures including twisting and pyramidalization of terminal CH2-groups. Geometry relaxations in and excitation energies to 1 1Bu and 2 1Ag states are discussed in detail. For planar structures the covalent 2 1Ag state is lower in energy than the 1 1Bu state. If non-planar geometry relaxations are allowed, the lowest lying non-planar excited singlet state turns out to be ionic with one terminal CH2 group rotated by 90°. Limitations of the current investigations due to restrictions in the MRCI treatment and because of incomplete scanning of excited state surfaces are pointed out.  相似文献   

14.
Ground and second excited electronic states of halogen and monomethyl substituted vinoxy radicals were studied by multireference configuration interaction (MRCI) calculation. Optimized geometries, rotational constants and vibrational frequencies of vinoxy and 1-fluorovinoxy showed good agreement with experimental values. Differences in calculated and observed B-X electronic transition energies were less than 0.1 eV and observed trends of blue shift upon increasing the number of substituted halogen atoms were reproduced by MRCI calculation. Observed fluorescence lifetimes of the vibrationless level in B state were in good agreement with calculated values. Rotational profiles of the 0-0 vibronic bands were successfully simulated with calculated rotational constants and transition dipole moments. Energy differences between planar and nonplanar optimized geometries in B state showed good correlation with the onset of fast nonradiative decay in B state, supporting the proposed mechanism of nonradiative decay via avoided crossings from B to A state which is followed by the decay to the ground state via conical intersections.  相似文献   

15.
State-selective mass spectrometry has revealed one conclusive and another probable metastable state of the N2O2+ dication, assigned respectively as 1 3Pi at 38.5 eV and 2 3Pi at 42.5 eV. Photon coincidence experiments confirm that dissociation of 1 3Pi is preceded by a fluorescent transition to X 3Sigma- and also indicate that an identical mechanism occurs for 2 3Pi. Highly correlated MRCI calculations are performed at a range of N2O2+ geometries, from which both N-N and N-O bond stretching curves are generated. Substantial barriers along both coordinates are observed for 1 3Pi and 2 3Pi, although the increasing density of states at higher energy may allow spin-orbit or vibronic predissociation for 2 3Pi. Fragment emissions derived from N2O+ and N2O2+ are analyzed with the aid of glass filters, from which NO (X 2Pi<--A 2Sigma+) and vibrationally excited N2+ (X 2Sigmag+<--B 2Sigmau+) transitions are deduced.  相似文献   

16.
17.
Multireference configuration interaction (MRCI) calculations of the lowest singlet X(1A') and triplet ?((3)A') states as well as the first excited singlet ?((1)A') state have been performed for a series of bromocarbenes: CHBr, CFBr, CClBr, CBr(2), and CIBr. The MRCI calculations were performed with correlation consistent basis sets of valence triple-ζ plus polarization quality, employing a full-valence active space of 18 electrons in 12 orbitals (12 and 9, respectively, for CHBr). Results obtained include equilibrium geometries and harmonic vibrational frequencies for each of the electronic states, along with ?((3)A') ← X((1)A') singlet-triplet gaps and ?((1)A') ← X((1)A') transition energies. Comparisons have been made with previous computational and experimental results where available. The MRCI calculations presented in this work provide a comprehensive series of results at a consistent high level of theory for all of the bromocarbenes.  相似文献   

18.
There has been a substantial amount of theoretical investigations on the photodynamics of pyrrole, often relying on surface hopping techniques or, if fully quantal, confining the study to the lowest two or three singlet states. In this study we extend ab initio based quantum dynamical investigations to cover simultaneously the lowest five singlet states, two π-σ? and two π-π? excited states. The underlying potential energy surfaces are obtained from large-scale MRCI ab initio computations. These are used to extract linear and quadratic vibronic coupling constants employing the corresponding coupling models. For the N-H stretching mode Q(24) an anharmonic treatment is necessary and also adopted. The results reveal a sub-picosecond internal conversion from the S(4) (π-π?) state, corresponding to the strongly dipole-allowed transition, to the S(1) and S(2) (π-σ?) states and, hence, to the ground state of pyrrole. The significance of the various vibrational modes and coupling terms is assessed. Results are also presented for the dissociation probabilities on the three lowest electronic states.  相似文献   

19.
Ground and lowest two singlet excited state geometries of four tautomeric forms (N9H, N7H, N3H and N1H) of each of adenine and 2-aminopurine (2AP) were optimized using an ab initio approach employing a mixed basis set (6-311 + G* on the nitrogen atom of the amino group and 4-31G basis set on the other atoms). Excited states were generated employing configuration interaction involving single electron excitations (CIS). Subsequently, the different species were solvated in water employing the self-consistent reaction field (SCRF) approach along with the corresponding gas phase optimized geometries. Thus the observed absorption and fluorescence spectra of adenine and 2AP have been explained successfully. It is concluded that both the N9H and N7H forms of 2AP would contribute to absorption and fluorescence spectra. Further, the fluorescence of 2AP would be absorbed by its cation in which both the N9 and N7 atoms are protonated, the fluorescence of which can have an anti-Stokes component. Among the different tautomers of adenine, the N9H form would be present dominantly in the ground state in aqueous solutions but the N7H form would be produced by energy transfer and subsequent fluorescence. The N3H form of adenine appears to be responsible for the observed absorption near 300 nm by its solutions intermittently exposed to ultraviolet radiation. The rings of the different species related to 2AP and adenine remain almost planar in the pi-pi* and n-pi* singlet excited states as in the ground state. The pyramidal character of the amino group is usually less in the pi-pi* excited states than that in the corresponding ground or n-pi* excited states. Molecular electrostatic potential (MEP) maps of the molecules provide useful clues regarding phototautomerism.  相似文献   

20.
Theoretical investigation of excited states of C(3)   总被引:1,自引:0,他引:1  
In this work, we present ab initio calculations for the potential energy surfaces of C(3) in different electronic configurations, including the singlet ground state [X (1)Sigma(g) (+),((1)A(1))], the triplet ground state [a (3)Pi(u),((3)B(1), (3)A(1))], and some higher excited states. The geometries studied include triangular shapes with two identical bond lengths, but different bond angles between them. For the singlet and triplet ground states in the linear geometry, the total energies resulting from the mixed density functional--Hartree-Fock and quadratic configuration interaction methods reproduce the experimental values, i.e., the triplet occurs 2.1 eV above the singlet. In the geometry of an equilateral triangle, we find a low-lying triplet state with an energy of only 0.8 eV above the energy of the singlet in the linear configuration, so that the triangular geometry yields the lowest excited state of C(3). For the higher excited states up to about 8 eV above the ground state, we apply time-dependent density functional theory. Even though the systematic error produced by this approach is of the order of 0.4 eV, the results give different prospective to insight into the potential energy landscape for higher excitation energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号