首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In supercooled liquids, vitrification generally suppresses crystallization. Yet some glasses can still crystallize despite the arrest of diffusive motion. This ill-understood process may limit the stability of glasses, but its microscopic mechanism is not yet known. Here we present extensive computer simulations addressing the crystallization of monodisperse hard-sphere glasses at constant volume (as in a colloid experiment). Multiple crystalline patches appear without particles having to diffuse more than one diameter. As these patches grow, the mobility in neighboring areas is enhanced, creating dynamic heterogeneity with positive feedback. The future crystallization pattern cannot be predicted from the coordinates alone: Crystallization proceeds by a sequence of stochastic micronucleation events, correlated in space by emergent dynamic heterogeneity.  相似文献   

2.
We introduce a set of theoretical ideas that form the basis for an analytical framework capable of describing nonequilibrium dynamics in glassy systems. We test the resulting scenario by comparing its predictions with numerical simulations of short-range spin glasses. Local fluctuations and responses are shown to be connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. Scaling relationships are uncovered for the slow evolution of heterogeneities at all time scales.  相似文献   

3.
4.
The structure and growth of crystal nuclei that spontaneously form during computer simulations of the simplest nontrivial model of a liquid, the hard sphere system, is described in this work. Compact crystal nuclei are observed to form at densities within the coexistence region of the phase diagram. The nuclei possess a range of morphologies with a predominance of multiply twinned particles possessing in some cases a significant decahedral character. However the multiply twinned particles do not form from an initial decahedral core but appear to nucleate as blocks of a face-centered cubic crystal partially bounded by stacking faults.  相似文献   

5.
6.
Direct imaging of settling, non-Brownian, hard sphere, particles allows measurement of particle occupancy statistics as a function of time and sampling volume dimension. Initially random relative particle number fluctuations, (2)>/ = 1, become suppressed, anisotropic, and dependent. Fitting to a simple Gaussian pair correlation model suggests a minute long ranged correlation leads to strong if not complete suppression of number fluctuations. Calflisch and Luke predict a divergence in velocity fluctuations with increasing sample volume size based on random (Poisson) statistics. Our results suggest this is not a valid assumption for settling particles.  相似文献   

7.
We show that near densest packing the perturbations of the hexagonal close packed (hcp) structure yield higher entropy than perturbations of any other densest packing. The difference between the various structures shows up in the correlations between motions of nearest neighbors. In the hcp structure random motion of each sphere impinges slightly less on the motion of its nearest neighbors than in the other structures.  相似文献   

8.
New calculations have been made of the self-diffusion coefficient D, the shear viscosity ηs, the bulk viscosity ηb and thermal conductivity λ of the hard sphere fluid, using molecular dynamics (MD) computer simulation. A newly developed hard sphere MD scheme was used to model the hard sphere fluid over a wide range up to the glass transition (~0.57 packing fraction). System sizes of up to 32 000 hard spheres were considered. This set of transport coefficient data was combined with others taken from the literature to test a number of previously proposed analytical formulae for these quantities together with some new ones given here. Only the self-diffusion coefficient showed any substantial N dependence for N < 500 at equilibrium fluid densities (ε 0.494). D increased with N, especially at intermediate densities in the range ε ~ 0.3–0.35. The expression for the packing fraction dependence of D proposed by Speedy, R. J., 1987, Molec. Phys., 62, 509 was shown to fit these data well for N ~ 500 particle systems. We found that the packing fraction ε dependence of the two viscosities and thermal conductivity, generically denoted by X, were represented well by the simple formula X/X 0 = 1/[1 ? (ε/ε1)]m within the equilibrium fluid range 0 > ε > 0.493. This formula has two disposable parameters, ε and m, and X 0 is the value of the property X in the limit of zero density. This expression has the same form as the Krieger-Dougherty formula (Kreiger, I. M., 1972, Adv. Colloid. Interface Sci., 3, 111) which is used widely in the colloid literature to represent the packing fraction dependence of the Newtonian shear viscosity of monodisperse colloidal near-hard spheres. Of course, in the present case, X o was the dilute gas transport coefficient of the pure liquid rather than the solvent viscosity. It was not possible to fit the transport coefficient normalized by their Enskog values with such a simple expression because these ratios are typically of order unity until quite high packing fractions and then diverge rapidly at higher values over a relatively narrow density range. At the maximum equilibrium fluid packing fraction ε = 0.494 for both the hard sphere fluid and the corresponding colloidal case a very similar value was found for ηso ?30–40, suggesting that the ‘crowding’ effects and their consequences for the dynamics in this region of the phase diagram in the two types of liquid have much in common. For the hard sphere by MD, Do/D ~ 11 at the same packing fraction, possibly indicating the contribution from ‘hydrodynamic enhancement’ of this transport coefficient, which is largely absent for the shear viscosity. Interestingly the comparable ratio for hard sphere colloids is the same.  相似文献   

9.
SAFT-dimer (SAFT-D) theory is reformulated to yield an improved equation of state for the hard sphere chain fluid. Two sets of the equation of state are proposed by employing Chiew's expressions for the contact values of the m hard sphere site-site correlation function g(σ). Comparison with molecular simulation data shows that the improved SAFT-D equation of state predicts the compressibility factor more accurately than Ghonasgi and Chapman's equation of state. It has been shown that SAFT-dimer theory can be applied readily to fused hard sphere chain fluids by considering the correct value of the effective chain length (m*). SAFT-dimer theory is also extended to the 2-dimensional tangent and fused hard disc chain fluids. For the fused hard disc dimer fluid, the SAFT equation of state is found to be more accurate than the Boublik hard disc dimer equation of state. For tangent hard disc chain fluids, the results obtained from SAFT-dimer theory are compared with Monte Carlo results for 5-mers and with GFD theory for 4-mers, 8-mers and 16-mers.  相似文献   

10.
The structure of polydisperse hard sphere fluids, in the presence of a wall, is studied by the Rosenfeld density functional theory. Within this approach, the local excess free energy depends on only four combinations of the full set of density fields. The case of continuous polydispersity thereby becomes tractable. We predict, generically, an oscillatory size segregation close to the wall, and connect this, by a perturbation theory for narrow distributions, with the reversible work for changing the size of one particle in a monodisperse reference fluid.  相似文献   

11.
A unified proof is given for the existence of a phase transition for any two or three dimensional lattice gas with hard cores excluding nearest neighbor occupancy, provided only that the lattice is an open one (possessing two sublattices). It is not required that one sublattice be a translate of the other. Consequently the proof applies to the plane hexagonal and to the diamond lattices, as well as the cubic lattices previously proved to have phase transitions. The models are converted to equivalent Ising spin 1/2 systems on one sublattice by a partial trace over the other. The spin system has many-spin interactions including some of odd order, which destroys up-down symmetry, but recent work of Pirogov and Sinai on such systems is shown to be applicable and to prove the existence of the phase transition.Supported in part by National Science Foundation Grant No. GP 33535X.  相似文献   

12.
An impurity particle coupling to its host fluid via inelastic hard sphere collisions is considered. It is shown that the exact equation for its distribution function can be mapped onto that for an impurity with elastic collisions and an effective mass. The application of this result to the Enskog-Lorentz kinetic equation leads to several conclusions: (1) every solution in the elastic case is equivalent to a class of solutions in the granular case; (2) for an equilibrium host fluid the granular impurity approaches equilibrium at a different temperature, with a dominant diffusive mode at long times; (3) for a granular host fluid in its scaling state, the granular impurity approaches the corresponding scaling solution.  相似文献   

13.
一个简单硬球碰撞问题中的混沌   总被引:2,自引:0,他引:2  
对于一个在铅垂线上的两个硬球及刚性地面组成的硬球碰撞体系,计算了它的Lyapunov指数.因为该Lyapunov指数的正定性,所以该体系是一个混沌体系.  相似文献   

14.
JAMES W. DUFTY 《Molecular physics》2013,111(14):2331-2336
The shear stress autocorrelation function has been studied by molecular dynamics simulation using the q?n potential for very large n. The results are analysed and interpreted here by comparing them with the shear stress response function for hard spheres. It is shown that the hard sphere response function has a singular contribution, and that this is reproduced accurately by the simulations for large n. A simple model for the stress autocorrelation function at finite n is proposed, based on the required hard sphere limiting form.  相似文献   

15.
A computer simulation experiment of a dense hard sphere fluid of 256 particles shows that the intermediate scattering function and the longitudinal velocity correlation function can be described by three extended hydrodynamic modes, the properties of which agree well with those predicted by the revised Enskog theory.  相似文献   

16.
We study numerically the formation of long-lived transient shear bands during shear startup within two models of soft glasses (a simple fluidity model and an adapted "soft glassy rheology" model). The degree and duration of banding depends strongly on the applied shear rate, and on sample age before shearing. In both models the ultimate steady flow state is homogeneous at all shear rates, consistent with the underlying constitutive curve being monotonic. However, particularly in the soft glassy rheology case, the transient bands can be extremely long lived. The banding instability is neither "purely viscous" nor "purely elastic" in origin, but is closely associated with stress overshoot in startup flow.  相似文献   

17.
We develop a simple analytical theory that relates dense sphere packings in a cylinder to corresponding disk packings on its surface. It applies for ratios R=D/d (where d and D are the diameters of the hard spheres and the bounding cylinder, respectively) up to R=1+1/sin(π/5). Within this range the densest packings are such that all spheres are in contact with the cylindrical boundary. The detailed results elucidate extensive numerical simulations by ourselves and others by identifying the nature of various competing phases.  相似文献   

18.
The influence of gravity on the long-time behavior of the mean squared displacement in glasses of polydisperse colloidal hard spheres was studied by means of real-space fluorescent recovery after photobleaching. We present, for the first time, a significant influence of gravity on the mean squared displacements of the particles. In particular, we observe that systems which are glasses under gravity (with a gravitational length on the order of tens of micrometers) show anomalous diffusion over several decades in time if the gravitational length is increased by an order of magnitude. No influence of gravity was observed in systems below the glass transition density. We show that this behavior is caused by gravity dramatically accelerating aging in colloidal hard sphere glasses. This behavior explains the observation that colloidal hard sphere systems which are a glass on Earth rapidly crystallize in space.  相似文献   

19.
We develop a theory for the mobile constituent of a superionic conductor using the Ornstein-Zernike integral equation for the pair correlation function of an inhomogeneous fluid. We solve this equation in the Percus-Yevick approximation using a simple decoupling procedure and hard core potentials. Comparison is made with molecular dynamics calculations on α-AgI.  相似文献   

20.
It is demonstrated that the minimization of the free energy functional for hard spheres and hard disks yields the result that excited granular materials under gravity segregate not only in the widely known "Brazil nut" fashion, i.e., with the larger particles rising to the top, but also in reverse "Brazil nut" fashion. Specifically, the local density approximation is used to investigate the crossover between the two types of segregation occurring in the liquid state, and the results are found to agree qualitatively with previously published results of simulation and of a simple model based on condensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号