首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate the time reversal Aharonov-Casher (AC) effect in small arrays of mesoscopic semiconductor rings. By using an electrostatic gate we can control the spin precession rate and follow the AC phase over several interference periods. We show that we control the precession rate in two different gate voltage ranges; in the lower range the gate voltage dependence is strong and linear and in the higher range the dependence in almost an order of magnitude weaker. We also see the second harmonic of the AC interference, oscillating with half the period. We finally map the AC phase to the spin-orbit interaction parameter alpha and find it is consistent with Shubnikov-de Haas analysis.  相似文献   

2.
We report a study of the Aharonov-Bohm effect, the oscillations of the resistance of a mesoscopic ring as a function of a perpendicular magnetic field, in a GaAs two-dimensional hole system with a strong spin-orbit interaction. The Fourier spectra of the oscillations reveal extra structure near the main peak whose frequency corresponds to the magnetic flux enclosed by the ring. A comparison of the experimental data with results of simulations demonstrates that the origin of the extra structure is the geometric (Berry) phase acquired by the carrier spin as it travels around the ring.  相似文献   

3.
Ring structures fabricated from HgTe/HgCdTe quantum wells have been used to study Aharonov-Bohm type conductance oscillations as a function of Rashba spin-orbit splitting strength. We observe nonmonotonic phase changes indicating that an additional phase factor modifies the electron wave function. We associate these observations with the Aharonov-Casher effect. This is confirmed by comparison with numerical calculations of the magnetoconductance for a multichannel ring structure within the Landauer-Büttiker formalism.  相似文献   

4.
We experimentally investigate the temperature dependence of Rabi oscillations and Ramsey fringes in superconducting phase qubits. In a wide range of temperatures, we find that both the decay time and the amplitude of these coherent oscillations remain nearly unaffected by thermal fluctuations. In the two-level limit, coherent qubit response rapidly vanishes as soon as the energy of thermal fluctuations k(B)T becomes larger than the energy level spacing variant Planck's over h omega of the qubit. In contrast, a sample of much shorter coherence times displayed semiclassical oscillations very similar to Rabi oscillation, but showing a qualitatively different temperature dependence. Our observations shed new light on the origin of decoherence in superconducting qubits. The experimental data suggest that, without degrading already achieved coherence times, phase qubits can be operated at temperatures much higher than those reported till now.  相似文献   

5.
Xin Li 《Physics letters. A》2008,372(30):4980-4984
In virtue of the quantum invariant theory, we obtain the rigorous solution of the isotropic bipartite system in rotational magnetic fields, based on which the general expression of the noncyclic geometric phase is worked out and the entanglement dependence of the noncyclic geometric phase in this model is investigated. We show that the influence of the coupling on noncyclic geometric phase depends on the initial condition of the system. We also show that when the magnetic fields are stationary, there is a more general class of states existed of which the noncyclic geometric phase could be interpreted solely in terms of the solid angle enclosed by the geodesically closed curve on a two-sphere parameterized by the evolving Schmidt coefficients.  相似文献   

6.
7.
The Chao matrix formalism allows analytic calculations of a beam's polarization behavior inside a spin resonance. We recently tested its prediction of polarization oscillations occurring in a stored beam of polarized particles near a spin resonance. Using a 1.85 GeV/c polarized deuteron beam stored in the COoler SYnchrotron, we swept a new rf solenoid's frequency rather rapidly through 400 Hz during 100 ms, while varying the distance between the sweep's end frequency and the central frequency of an rf-induced spin resonance. Our measurements of the deuteron's polarization near and inside the resonance agree with the Chao formalism's predicted oscillations.  相似文献   

8.
9.
10.
11.
Consecutive, phase-coherent, near-resonant optical excitations of atoms have been used to realize an atom interferometer with a beam of thermal calcium atoms. We have measured the topological phase shift due to the interaction of a static electric field with the magnetic dipole moment of a moving atom (Aharonov-Casher effect). The observed phase shift was proportional to the electric field and, within our experimental uncertainty, independent of the particle's velocity. The measured value of the phase shift has been found to agree with the predicted one within a relative uncertainty of 2.2%.Dedicated to H. Walther on the occasion of his 60th birthday  相似文献   

12.
Isospin dependence of proton density radius is proposed. The fit to the experimental isotopic shifts of the mean square charge radius of the even-even nuclei with 38Z78 shows that the radius is less dependent on the neutron number than is usually assumed. Uniform density distribution was assumed and the ground state deformations were taken from the microscopic calculations.This work is partly supported by the Polish Committee of Scientific Research under contract No. 203119101 and the French Ministry of Scientific Research and Education  相似文献   

13.
We study the quantum phases of anisotropic XY spin chain in presence and absence of adiabatic quench. A connection between geometric phase and criticality is established from the dynamical behavior of the geometric phase for a quench induced quantum phase transition in a quantum spin chain. We predict XX criticality associated with a sequence of non-contractible geometric phases.  相似文献   

14.
We show that the geometric phase of the ground state in the XY model obeys scaling behavior in the vicinity of a quantum phase transition. In particular we find that the geometric phase is nonanalytical and its derivative with respect to the field strength diverges at the critical magnetic field. Furthermore, the universality in the critical properties of the geometric phase in a family of models is verified. In addition, since the quantum phase transition occurs at a level crossing or avoided level crossing and these level structures can be captured by the Berry curvature, the established relation between the geometric phase and quantum phase transitions is not a specific property of the XY model, but a very general result of many-body systems.  相似文献   

15.
The temperature dependence of the hybrid quantum oscillation amplitude in an accumulation layer on n-InAs is interpreted by analogy to the Shubnikov-de Haas effect. Amplitudes for oscillations corresponding to excited subbands follow the expected decay law. Characteristic decay energies, on the order of 5 meV, are compared to known intersubband spacings.  相似文献   

16.
17.
The scattering amplitude for the scattering of circularly polarized KeV photons by a magnetized 3d transition metal is derived. In addition to the well-known form factor approximation a spin dependent term is found. It is smaller by a factor ω/mc 2 (ω being the photon energy) and proportional to the spin magnetic form factor. Results for the degree of polarization are too small to explain recent experiments.  相似文献   

18.
We propose a setup which allows us to couple the electron spin degree of freedom to the mechanical motions of a nanomechanical system not involving any of the ferromagnetic components. The proposed method employs the strain-induced spin-orbit interaction of electrons in narrow gap semiconductors. We have shown how this method can be used for detection and manipulation of the spin flow through a suspended rod in a nanomechanical device.  相似文献   

19.
We consider a qubit symmetrically and transversely coupled to an XY spin chain with Dzyaloshinsky-Moriya(DM) interaction in the presence of a transverse magnetic field.An analytical expression for the geometric phase of the qubit is obtained in the weak coupling limit.We find that the modification of the geometrical phase induced by the spin chain environment is greatly enhanced by DM interaction in the weak coupling limit around the quantum phase transition point of the spin chain.  相似文献   

20.
The most difficult problem in shallow underwater acoustic communications is considered to be the time-varying multipath propagation because it impacts negatively on data rates. At high data rates the intersymbol interference requires adaptive algorithms on the receiver side that lead to computationally intensive and complex signal processing. A novel technique called time-reversal acoustics (TRA) can environmentally adapt the acoustic propagation effects of a complex medium in order to focus energy at a particular target range and depth. Using TRA, the multipath structure is reduced because all the propagation paths add coherently at the intended target location. This property of time-reversal acoustics suggests a potential application in the field of noncoherent acoustic communications. This work presents results of a tank scale experiment using an algorithm for rapid transmission of binary data in a complex underwater environment with the TRA approach. A simple 15-symbol code provides an example of the simplicity and feasibility of the approach. Covert coding due to the inherent scrambling induced by the environment at points other than the intended receiver is also investigated. The experiments described suggest a high potential in data rate for the time-reversal approach in underwater acoustic communications while keeping the computational complexity low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号