首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider how trapped molecules can be sympathetically cooled by ultracold atoms. As a prototypical system, we study LiH molecules co-trapped with ultracold Li atoms. We calculate the elastic and inelastic collision cross sections of 7LiH + 7Li with the molecules initially in the ground state and in the first rotationally excited state. We then use these cross sections to simulate sympathetic cooling in a static electric trap, an ac electric trap, and a microwave trap. In the static trap we find that inelastic losses are too great for cooling to be feasible for this system. The ac and microwave traps confine ground-state molecules, and so inelastic losses are suppressed. However, collisions in the ac trap can take molecules from stable trajectories to unstable ones and so sympathetic cooling is accompanied by trap loss. In the microwave trap there are no such losses and sympathetic cooling should be possible.  相似文献   

2.
We laser cool 5x10(7) Cs atoms to a spin-polarized phase space density of 1/30, the highest ever obtained by laser cooling. It is achieved by compression and polarization gradient cooling in a 3D far-off-resonant optical lattice, followed by 3D Raman sideband cooling optimized at a density of 1.5x10(12) atoms/cm(3), and adiabatic release. In the lattice, 23% of the sites are occupied, 95% of the atoms are in the lowest energy magnetic sublevel, and 37% are in the lowest 3D vibrational state.  相似文献   

3.
王鹏军  熊德智  付正坤  张靖 《中国物理 B》2011,20(1):16701-016701
We investigate sympathetic cooling fermions 40K by evaporatively cooling bosonic 87Rb atoms in a magnetic trap with microwave and radio frequency induced evaporations in detail. The mixture of bosonic and fermionic atoms is prepared in their polarized spin states |F=9/2, mF=9/2> for 40K and |F=2, mF=2> for 87Rb, which is trapped in Quadrupole--Ioffe--Configuration trap. Comparing microwave with radio frequency evaporatively cooling bosonic 87Rb atoms with sympathetically cooling Fermi gas 40K, we find that the presence of rubidium atoms in the |2,1> Zeeman states, which are generated in the evaporative process, gives rise to a significant loss of 40K due to inelastic collisions. Thus, the rubidium atoms populated in the |2, 1> Zeeman states should be removed in order to effectively perform sympathetically cooling 40K with the evaporatively cooled 87Rb atoms.  相似文献   

4.
陈良超  孟增明  王鹏军 《物理学报》2017,66(8):83701-083701
采用二维磁光阱产生了-个快速~(87)Rb原子流,并在高真空的三维磁光阱中实现了~(87)Rb原子的快速俘获,进一步采用射频蒸发冷却技术实现了原子云的预冷却,然后将原子转移到远失谐的光学偶极阱中蒸发得到了玻色-爱因斯坦凝聚体.实验上可以在25 s内完成三维磁光阱的装载(约1.0×10~(10)个~(87)Rb原子),然后经过16 s的冷却过程最终在光学偶极阱中获得5.0×10~5个原子的玻色-爱因斯坦凝聚体.实验重点研究了二维磁光阱的优化设计和采用蓝失谐大功率光束对四极磁阱零点的堵塞,抑制四极磁阱中原子的马约拉纳损耗,更加有效地对原子云进行预冷却.  相似文献   

5.
《中国物理 B》2021,30(6):63401-063401
We report the production of~(39) K and~(87) Rb Bose–Einstein condensates(BECs) in the lowest hyperfine states |F =1, m_F = 1 simultaneously. We collect atoms in bright/dark magneto-optical traps(MOTs) of~(39) K/~(87) Rb to overcome the light-assisted losses of~(39) K atoms. Gray molasses cooling on the D1 line of the~(39) K is used to effectively increase the phase density, which improves the loading efficiency of~(39) K into the quadrupole magnetic trap. Simultaneously, the normal molasses is employed for~(87) Rb. After the microwave evaporation cooling on~(87) Rb in the optically plugged magnetic trap,the atoms mixture is transferred to a crossed optical dipole trap, where the collisional properties of the two species in different combinations of the hyperfine states are studied. The dual species BECs of~(39) K and~(87) Rb are obtained by further evaporative cooling in an optical dipole trap at a magnetic field of 372.6 G with the background repulsive interspecies scattering length a_(KRb)= 34 a_0(a_0 is the Bohr radius) and the intraspecies scattering length a_K= 20.05 a_0.  相似文献   

6.
We propose a novel scheme to form a 1D optical molasses by using two counter-propagating red-detuned elliptical Gaussian beams possessing an ultrahigh orbital angular-momentum. In this optical molasses, atoms will suffer both an axial and an azimuthal Doppler cooling, and their temperature can be far below the conventional Doppler cooling limit, which provides a new opportunity for the laser cooling of the most abundant bosonic isotopes of alkaline-earth atoms. Because these atoms lack the hyperfine structure, they cannot be cooled by the well-known sub-Doppler cooling schemes.  相似文献   

7.
We propose a dark gravito-optical dipole trap, for alkali atoms, consisting of a blue-detuned, pyramidal-hollow laser beam propagating upward and the gravity field. When cold atoms from a magneto-optical trap are loaded into the pyramidal-hollow beam and bounce inside the pyramidal-hollow beam, they experience efficient Sisyphus cooling and geometric cooling induced by the pyramidal-hollow beam and the weak repumping beam propagating downward. Our study shows that an ultracold and dense atomic sample with an equilibrium 3D momentum of ~3 \hbar k and an atomic density above the point of Bose-Einstein condensation may be obtained in this pure optical trap.  相似文献   

8.
The effect of microwave radiation on the resonance fluorescence of a cloud of cold 85Rb atoms in a magnetooptical trap is studied. The radiation frequency was tuned near the hyperfine splitting frequency of rubidium atoms in the 5S ground state. The microwave field induced magnetic dipole transitions between the magnetic sublevels of the 5S (F=2) and 5S (F=3) states, resulting in a change in the fluorescence signal. The resonance fluorescence spectra were recorded by tuning the microwave radiation frequency. The observed spectra were found to be substantially dependent on the transition under study and the frequency of a repump laser used in the cooling scheme.  相似文献   

9.
We discuss the possibility of trapping polar molecules in the standing-wave electromagnetic field of a microwave resonant cavity. Such a trap has several novel features that make it very attractive for the development of ultracold molecule sources. Using commonly available technologies, microwave traps can be built with large depth (up to several Kelvin) and acceptance volume (up to several cm3), suitable for efficient loading with currently available sources of cold polar molecules. Unlike most previous traps for molecules, this technology can be used to confine the strong-field seeking absolute ground state of the molecule, in a free-space maximum of the microwave electric field. Such ground state molecules should be immune to inelastic collisional losses. We calculate elastic collision cross-sections for the trapped molecules, due to the electrical polarization of the molecules at the trap center, and find that they are extraordinarily large. Thus, molecules in a microwave trap should be very amenable to sympathetic and/or evaporative cooling. The combination of these properties seems to open a path to producing large samples of polar molecules at temperatures much lower than has been previously possible.Received: 30 June 2004, Published online: 23 November 2004PACS: 33.80.Ps Optical cooling of molecules; trapping - 34.50.-s Scattering of atoms and molecules - 33.80.-b Photon interactions with molecules - 33.55.Be Zeeman and Stark effects  相似文献   

10.
We demonstrate a simple, general purpose method to cool neutral atoms. A sample containing 3x10(8) cesium atoms prepared in a magneto-optical trap is cooled and simultaneously spin polarized in 10 ms at a density of 1.1x10(11) cm (-3) to a phase space density nlambda(3)(dB) = 1/500, which is almost 3 orders of magnitude higher than attainable in free space with optical molasses. The technique is based on 3D degenerate Raman sideband cooling in optical lattices and remains efficient even at densities where the mean lattice site occupation is close to unity.  相似文献   

11.
We develop quantum models for the combined external and internal motion of atoms in a strongly coupled driven cavity mode including the transverse degrees of freedom. Using a simplified Gaussian mode function we determine the parameter regimes and prospects of 3D cooling and confinement of one or two atoms in the cavity field. Analysing the field dynamics for slow atoms traversing the cavity, we show that the spectrum of the transmitted and spontaneously scattered light contains ample information on the motional dynamics of the atom and can be nicely used to investigate the cooling properties of the system. Including several atoms in the dynamics we show how motional correlations build up by the common interaction with the cavity field. This can be looked upon as collisions at far distance and can be monitored via the transmitted field dynamics. Received 5 March 1999 and Received in final form 4 May 1999  相似文献   

12.
王正岭  曹国荣  印建平 《物理学报》2008,57(10):6233-6239
提出了一种采用两套超大红失谐消逝波干涉和一束蓝失谐消逝波光场来实现原子二维表面微光阱阵列和原子有效强度梯度冷却的新方案,得到了二维表面微光阱阵列的光强分布和光学势分布.研究发现,二维表面微光阱阵列中微光阱的光学势能够有效地囚禁从标准磁光阱中释放的冷原子,并且被囚禁的冷原子能在蓝失谐消逝波光场的作用下产生有效的强度梯度Sisyphus冷却,对87Rb原子而言,原子温度能被冷却到2.56μK.该方案在冷原子物理、原子光学和量子光学领域中有着广阔的应用前景. 关键词: 消逝波干涉 微光阱阵列 原子囚禁 强度梯度冷却  相似文献   

13.
We propose a novel scheme to form a 2D dark optical surface lattice (DOSL) for cold atoms on the surface of the dense flint glass by using two sets of blue-detuned evanescent wave interference fields and a blue-detuned evanescent wave field. In the 2D DOSL, cold atoms will be trapped in the vicinity of minimum intensity and suffered the minimal light shift as well as the lowest coherence loss. The total potential and trap-depth of the individual optical micro-trap in the 2D DOSL are high enough to trap cold atoms (T = 120 μK) released from the standard magneto-optical trap (MOT), and atoms trapped in the 2D DOSL can be cooled to several μK with the efficient intensity-gradient Sisyphus cooling. The lattice constant of the DOSL can be controllable by changing the incident angles of lights.  相似文献   

14.
三维光学晶格中铯原子的装载与冷却   总被引:1,自引:0,他引:1       下载免费PDF全文
邱英  何军  王彦华  王婧  张天才  王军民 《物理学报》2008,57(10):6227-6232
建立了四光束的三维光学晶格势场,在铯原子磁光阱和光学粘团的基础上实现了红失谐三维光学晶格中冷原子的装载.借助于短程飞行时间吸收谱测量冷原子温度,通过改变光学晶格的总光强和频率失谐等条件,对光学晶格中铯原子的亚多普勒冷却以及光学晶格中冷原子的寿命进行了研究. 关键词: 光学晶格 磁光阱 光学粘团 冷原子  相似文献   

15.
N Ohtsubo  T Aoki  Y Torii 《Optics letters》2012,37(14):2865-2867
We report on the demonstration of Doppler-free polarization spectroscopy of the D2 line of (6)Li atoms. Counterintuitively, the presence of an Ar buffer gas, in a certain pressure range, causes a drastic enhancement of the polarization rotation signal. The observed dependence of the signal amplitude on the Ar buffer pressure and the pump laser power is reproduced by calculations based on simple rate equations. We performed stable laser frequency locking using a dispersion signal obtained by polarization spectroscopy for laser cooling of (6)Li atoms.  相似文献   

16.
高峰  常宏  王心亮  田晓  张首刚 《物理学报》2011,60(5):50601-050601
本文主要研究锶原子光钟Doppler冷却过程中再抽运光对俘获冷原子参数的影响,实验上测得再抽运光光强和失谐跟所俘获原子数目的关系,并且测得了在同时注入再抽运光707 nm和679 nm后使俘获冷原子的数目提高了17倍,分析了再抽运光的失谐对俘获原子数目的影响,测得了再抽运光707 nm在失谐5 MHz的情况下俘获原子数目的波动小于3‰. 关键词: 光频标 激光冷却与俘获 原子俘获率  相似文献   

17.
Evaporative cooling of ultracold Yb atoms near the quantum-degenerate regime was experimentally studied. Three bosons of 170Yb, 172Yb, 176Yb and two fermions of 171Yb and 173Yb were evaporatively cooled in a crossed far-off resonant trap (FORT). We observed that 170Yb and 172Yb were not concentrated into the crossed region. We found that, in the cases of 176Yb atoms, atoms were concentrated well into the crossed region. The following evaporative cooling in the crossed region, however, did not work well. We performed the simultaneous trapping and sympathetic cooling in the crossed FORT by use of 172Yb-174Yb, 174Yb-176Yb, 172Yb-176Yb, and 171Yb-174Yb pairs. We observed that evaporative cooling worked well. This result shows that we succeeded in the enhancement of the atom collision rate. Especially, by use of 174Yb-176Yb mixture, we obtained cold 176Yb whose phase space density was 0.02. We observed a large atom loss, which limited the further sympathetic evaporative cooling. We also evaporatively cooled 174Yb in a 1D optical lattice. Evaporative cooling worked very well because the atoms were initially trapped at a high density. After evaporative cooling, we obtained very cold atoms, and T/T F was estimated to be 1.2.  相似文献   

18.
Xiaochi Liu 《中国物理 B》2022,31(4):43201-043201
We present a coherent population trapping clock system based on laser-cooled $^{87}$Rb atoms. The clock consists of a frequency-stabilized CPT interrogation laser and a cooling laser as well as a compact magneto-optical trap, a high-performance microwave synthesizer, and a signal detection system. The resonance signal in the continuous wave regime exhibits an absorption contrast of $\sim 50$%. In the Ramsey interrogation method, the linewidth of the central fringe is 31.25 Hz. The system achieves fractional frequency stability of ${2.4\times }{{10}}^{{-11}}/\sqrt \tau $, which goes down to ${1.8\times }{{10}}^{{-13}}$ at 20000 s. The results validate that cold atom interrogation can improve the long-term frequency stability of coherent population trapping clocks and holds the potential for developing compact/miniature cold atoms clocks.  相似文献   

19.
We propose a laser cooling technique in which atoms are selectively excited to a dressed metastable state whose light shift and decay rate are spatially correlated for Sisyphus cooling. The case of cooling magnetically trapped (anti)hydrogen with the 1S-2S-3P transitions by using pulsed ultraviolet and continuous-wave visible lasers is numerically simulated. We find a number of appealing features including rapid three-dimensional cooling from ~1 K to recoil-limited, millikelvin temperatures, as well as suppressed spin-flip loss and manageable photoionization loss.  相似文献   

20.
Resonant electric dipole-dipole interactions between cold Rydberg atoms were observed using microwave spectroscopy. Laser-cooled 85Rb atoms in a magneto-optical trap were optically excited to 45d(5/2) Rydberg states using a pulsed laser. A microwave pulse transferred a fraction of these Rydberg atoms to the 46p(3/2) state. A second microwave pulse then drove atoms in the 45d(5/2) state to the 46d(5/2) state, and was used as a probe of interatomic interactions. The spectral width of this two-photon probe transition was found to depend on the presence of the 46p(3/2) atoms, and is due to the resonant electric dipole-dipole interaction between 45d(5/2) and 46p(3/2) Rydberg atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号