首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
《Nuclear Physics A》1997,627(4):710-746
Skyrme effective forces are revisited to improve their behavior with respect to the isospin degree of freedom from the stability line to the most exotic nuclei that coming experimental facilities will produce. To achieve the best possible calculation of nuclear properties up to the neutron drip line, it is proposed to fit the neutron matter equation of state of the UV14+UVII theoretical model up to high densities to avoid any collapses or unphysical features of the resulting equation of state in the Skyrme framework. This last and very severe constraint on these interactions allows a prospective study of both neutron rich nuclei and neutron star matter.  相似文献   

2.
The root-mean-square radius for neutrons in nuclei is investigated in the Skyrme Hartree-Fock model. The main source of theoretical variation comes from the exchange part of the density-dependent interaction which can be related to a basic property of the neutron equation of state. A precise measurement of the neutron radius in 208Pb would place an important new constraint on the equation of state for neutron matter. The Friedman-Pandharipande neutron equation of state would lead to a very precise value of 0.16+/-0.02 fm for the difference between the neutron and the proton root-mean-square radius in 208Pb.  相似文献   

3.
左维  李昂  罗陪燕  雍高产 《中国物理 C》2006,30(10):956-960
在Brueckner-Hartree-Fock理论框架内, 研究了新生中子星的状态方程和性质, 计算了新生中子星的最大质量和新生中子星中质子占总核子数的丰度, 特别是讨论了三体核力和中微子束缚效应的影响以及三体核力和中微子束缚效应的相互影响. 结果表明, 无论是否考虑三体核力, 中微子束缚对新生中子星的状态方程和质子丰度均有明显影响. 中微子束缚导致新生中子星物质中的质子丰度显著增大. 三体核力的贡献是使新生中子星的状态方程变硬并导致新生中子星中质子丰度明显增大. 束缚在中子星物质中的中微子显著减弱了三体核力对于中子星物质中质子丰度的影响.  相似文献   

4.
Within the spin-dependent Brueckner-Hatree-Fock framework, the equation of state of the spin-polarized neutron matter has been investigated by adopting the realistic nucleon-nucleon interaction AV18 supplemented with a microscopic three-body force. The related physical quantities such as spin-symmetry energy, magnetic susceptibility and the Landau parameter G0 in spin channel, have been extracted. The three-body force effects have been studied and discussed with a special attention. It is shown that in the whole range of spin-polarization, the energy per particle of spin-polarized neutron matter fulfills a quadratic relation versus the spin-polarization parameter δ= (p-p )/p . The predicted spin-symmetry energy is positive in the density region up to ρ = 0.8fm-3 and increase monotonically as increasing density so that no any evidence is found for a spontaneous transition to a ferromagnetic state in neutron matter. The three-body force effect is to strongly increase the spin-symmetry energy and reduce the magnetic susceptibility at high densities, as a consequence , to make neutron matter become more stable against spin fluctuation. The obtained Landau parameter G0 and its density dependence may serve as a constraint on the spin-spin parts of the phenomenological Skyrme and Skyrme-like interactions .  相似文献   

5.
We investigate the ^3PF2 neutron superfluidity in H-stable neutron star matter and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the threebody force effect on the ^3PF2 neutron pairing gap. It is found that the three-body force effect is to enhance remarkably the ^3PF2 neutron superfluidity in neutron star matter and neutron stars.  相似文献   

6.
The role of hypernuclear physics for the physics of neutron stars is delineated. Hypernuclear potentials in dense matter control the hyperon composition of dense neutron star matter. The three-body interactions of nucleons and hyperons determine the stiffness of the neutron star equation of state and thereby the maximum neutron star mass. Two-body hyperon–nucleon and hyperon–hyperon interactions give rise to hyperon pairing which exponentially suppresses cooling of neutron stars via the direct hyperon URCA processes. Nonmesonic weak reactions with hyperons in dense neutron star matter govern the gravitational wave emissions due to the r-mode instability of rotating neutron stars.  相似文献   

7.
Whether or not the deconfined quark phase exists in neutron star cores is an open question. We use two realistic effective quark models, the three-flavor Nambu-Jona-Lasinio model and the modified quark-meson coupling model, to describe the neutron star matter. We show that the modified quark-meson coupling model, which is fixed by reproducing the saturation properties of nuclear matter, can be consistent with the experimental constraints from nuclear collisions. After constructing possible hybrid equations of state (EOSes) with an unpaired or color superconducting quark phase with the assumption of the sharp hadron-quark phase transition, we discuss the observational constraints from neutron stars on the EOSes. It is found that the neutron star with pure quark matter core is unstable and the hadronic phase with hyperons is denied, while hybrid EOSes with a two-flavor color superconducting phase or unpaired quark matter phase are both allowed by the tight and most reliable constraints from two stars Ter 5 I and EXO 0748-676. And the hybrid EOS with an unpaired quark matter phase is allowed even compared with the tightest constraint from the most massive pulsar star PSR J0751+1807.  相似文献   

8.
The transition from hadron phase to strange quark phase in dense matter is investigated. Instead of using the conventional bag model in quark sect, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates, with a thermodynamic problem improved. In nuclear slot, we adopt the equation of state from Brueckner-Bethe-Goldstone approach with three-body force. It is found that the mixed phase can occur, for reasonable confinement parameter, near the normal saturation density, and transit to pure quark matter at 4—5 times the saturation, which is quite different from the previous results from other quark models that pure quark phase can not appear at neutron-star densities.  相似文献   

9.
《Nuclear Physics A》1997,615(4):516-536
An equation of state (EOS) of nuclear matter with explicit inclusion of a spin-isospin dependent force is constructed from a finite range, momentum and density dependent effective interaction. This EOS is found to be in good agreement with those obtained from more sophisticated models for unpolarised nuclear matter. Introducing spin degrees of freedom, it is found that it is possible for neutron matter to undergo a ferromagnetic transition at densities realisable in the core of neutron stars. The maximum mass and the surface magnetic field of the neutron star can be fairly explained in this model. Since finding quark matter rather than hadronic matter at the core of neutron stars is a possibility, the proposed EOS is also applied to the study of hybrid stars. It is found using the bag model picture that one can in principle describe both the mass as well as the surface magnetic field of hybrid stars satisfactorily.  相似文献   

10.
The transition from hadron phase to strange quark phase in dense matter is investigated. Instead of using the conventional bag model in quark sect, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates, with a thermodynamic problem improved. In nuclear slot, we adopt the equation of state from Brueckner-Bethe-Goldstone approach with three-body force. It is found that the mixed phase can occur, for reasonable confinement parameter, near the normal saturation density, and transit to pure quark matter at 4-5 times the saturation, which is quite different from the previous results from other quark models that pure quark phase can not appear at neutron-star densities.  相似文献   

11.
利用Brueckner-Hartree-Fock方法,计算了β稳定中子星物质的状态方程以及三体核力的影响,特别是研究了三体核力对中子星物质中K介子凝聚的影响. 结果表明三体核力对β稳定中子星物质中出现K介子凝聚的临界密度以及中子星物质中各种粒子所占的比例均有重要影响. 三体核力的主要作用是降低了中子星物质中出现K介子凝聚的临界密度并使K凝聚相中的核物质更加接近于对称核物质.  相似文献   

12.
The three-body force effects on the equation of state and its iso-spin dependence of asymmetric nuclearmatter and on the proton fraction in neutron star matter have been investigated within Brueckner-Hartree-Fock approachby using a microscopic three-body force. It is shown that, even in the presence of the three-body force, the empiricalparabolic law of the energy per nucleon vs. isospin asymmetry β= ( N - Z) /A is fulfilled in the whole asymmetry range0≤β≤1 and also up to high density. The three-body force provides a strong enhancement of symmetry energy at highdensity in agreement with relativistic approaches. It also shows that the three-body force leads to a much more rapidincreasing of symmetry energy with density in relatively high density region and to a much lower threshold density forthe direct URCA process to occur in a neutron star as compared to the predictions adopting only pure two-body force.  相似文献   

13.
崔常喜  左维 《物理学报》2007,56(9):5185-5190
利用Brueckner-Hartree-Fock(BHF)和BCS理论方法,计算了纯中子物质中处于3PF2态的中子对关联能隙,特别是研究并讨论了微观三体核力对3PF2态中子超流性强弱的影响. 结果表明:三体核力显著地增强了中子物质中3PF2态中子超流性;当采用BHF单粒子能谱时,三体核力导致相应的对关联能隙峰值由0.22MeV增大到0.50MeV. 关键词: 中子物质 3PF2超流性')" href="#">3PF2超流性 三体核力 BCS理论  相似文献   

14.
左维  陆广成 《物理学报》2007,56(7):3873-3879
利用Brueckner-Hartree-Fock和BCS理论方法,计算了非对称核物质中处于1S0态的质子和中子的对关联能隙,着重研究和讨论了能隙的同位旋依赖性和三体核力的影响.结果表明:随核物质的同位旋非对称度增大,中子1S0态超流相存在的密度范围逐渐缩小而且对关联能隙峰值稍有升高;质子1S0态超流相存在的密度范围迅速扩大而且对关联能隙峰值显著降低.三体核力对非对称核物质中1S0态中子超流性及其同位旋依赖性的影响相对较小,但对1S0态质子超流性具有重要影响,而且其效应随核子数密度增大而迅速增强.三体核力的主要作用是强烈地抑制了具有高非对称度的核物质中高密度区域的1S0态质子超流性,导致质子超流相存在的密度范围显著缩小. 关键词: 同位旋非对称核物质 质子和中子超流性 三体核力 BCS理论  相似文献   

15.
The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in theframework of the Brueckner-Hartree-Fock theory including a three-body force. The energy per nucleon E A (δ) calculatedin the full range of spin polarization δ = (ρ↑ - ρ↓)/ρ for symmetric nuclear matter and pure neutron matter fulfills aparabolic law. In both the cases the spin-symmetry energy is calculated as a function of the baryonic density alongwith the related quantities such as the magnetic susceptibility and the Landau parameter Go. The main effect of thethree-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value withonly two-body force. The equation of state is monotonically increasing with the density for all spin-aligned configurationsstudied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.  相似文献   

16.
Employing phenomenological density-dependent critical temperatures of strong singlet-state proton pairing and of moderate triplet-state neutron pairing, we investigate the effects of rotochemical heating on the thermal evolution of superfluid neutron stars whose cores consist of npe matter with the Akmal-Pandharipande-Ravenhall equation of state. Since the star is not quite in the weak interaction equilibrium state during spin-down, the departure from the chemical equilibrium leads to the rotochemical heating in a rotating NS which will increase the stellar's temperature. Our calculations show that the rotochemical heating delays the cooling of superfluid neutron stars considerably and makes the previous classification of NS cooling ambiguous. What's more, our model is currently consistent with all the observational data, and in particular some middle-aged and cold NSs (PRS J0205+6449 in 3C 58, PRS J1357-6429, RX J007.0+7303 in CTA 1, Vela) can be better explained when taking into account rotochemical heating.  相似文献   

17.
Brueckner calculations including a microscopic three-body force have been extended to isospin-asymmetric nuclear matter. The effects of the three-body force on the equation of state and on the single-particle properties of nuclear matter are discussed with a view to possible applications in nuclear physics and astrophysics. It is shown that, even in the presence of the three-body force, the empirical parabolic law of the energy per nucleon vs. isospin asymmetry β = (N - Z)/A is fulfilled in the whole asymmetry range 0≤β≤1 up to high densities. The three-body force provides a strong enhancement of the symmetry energy which increases with density in good agreement with the predictions of relativistic approaches. The Lane's assumption that proton and neutron mean fields linearly vary vs. the isospin parameter is violated at high density due to the three-body force, while the momentum dependence of the mean fields turns out to be only weakly affected. Consequently, a linear isospin split of the neutron and proton effective masses is found for both cases with and without the three-body force. The isospin effects on multifragmentation events and collective flows in heavy-ion collisions are briefly discussed along with the conditions for direct URCA processes to occur in the neutron star cooling. Received: 18 February 2002 / Accepted: 16 May 2002  相似文献   

18.
We review the calculation of the equation of state of pure neutron matter using quantum Monte Carlo (QMC) methods. QMC algorithms permit the study of many-body nuclear systems using realistic two- and three-body forces in a non-perturbative framework. We present the results for the equation of state of neutron matter, and focus on the role of three-neutron forces at supranuclear density. We discuss the correlation between the symmetry energy, the neutron star radius and the symmetry energy. We also combine QMC and theoretical models of the three-nucleon interactions, and recent neutron star observations to constrain the value of the symmetry energy and its density dependence.  相似文献   

19.
20.
杨芳  申虹 《中国物理 C》2008,32(7):536-542
We study the hadron-quark phase transition in the interior of neutron stars, and examine the influence of the nuclear equation of state on the phase transition and neutron star properties. The relativistic mean field theory with several parameter sets is used to construct the nuclear equation of state, while the  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号