首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A slab-based long-range correction for dipolar interactions in molecular dynamics simulation of systems with a planar geometry is presented and applied to simulate vapour–liquid interfaces. The present approach is validated with respect to the saturated liquid density and the surface tension of the Stockmayer fluid and a molecular model for ethylene oxide. The simulation results exhibit no dependence on the cut-off radius for radii down to 1 nm, proving that the long-range correction accurately captures the influence of the dipole moment on the intermolecular interaction energies and forces as well as the virial and the surface tension.  相似文献   

2.
We report the first example of a transition to long-range magnetic order in a purely dipolarly interacting molecular magnet. For the magnetic cluster compound Mn6O4Br4(Et2dbm)6, the anisotropy experienced by the total spin S = 12 of each cluster is so small that spin-lattice relaxation remains fast down to the lowest temperatures, thus enabling dipolar order to occur within experimental times at T(c) = 0.16 K. In high magnetic fields, the relaxation rate becomes drastically reduced and the interplay between nuclear- and electron-spin lattice relaxation is revealed.  相似文献   

3.
With a combination of the quantum repeater and the cluster state approaches, we show that efficient quantum computation can be constructed even if all the entangling quantum gates only succeed with an arbitrarily small probability p. The required computational overhead scales efficiently both with 1/p and n, where n is the number of qubits in the computation. This approach provides an efficient way to combat noise in a class of quantum computation implementation schemes, where the dominant noise leads to probabilistic signaled errors with an error probability 1-p far beyond any threshold requirement.  相似文献   

4.
It has recently been suggested that long-range magnetic dipolar interactions are responsible for spin ice behavior in the Ising pyrochlore magnets Dy2Ti2O7 and Ho2Ti2O7. We report here numerical results on the low temperature properties of the dipolar spin ice model, obtained via a new loop algorithm which greatly improves the dynamics at low temperature. We recover the previously reported missing entropy in this model, and find a first order transition to a long-range ordered phase with zero total magnetization at very low temperature. We discuss the relevance of these results to Dy2Ti2O7 and Ho2Ti2O7.  相似文献   

5.
We present a general technique to implement products of many qubit operators communicating via a joint harmonic oscillator degree of freedom in a quantum computer. By conditional displacements and rotations we can implement Hamiltonians which are trigonometric functions of qubit operators. With such operators we can effectively implement higher order gates such as Toffoli gates and C(n)-NOT gates, and we show that the entire Grover search algorithm can be implemented in a direct way.  相似文献   

6.
In this Letter, the problem of finding optimal success probabilities of linear optics quantum gates is linked to the theory of convex optimization. It is shown that by exploiting this link, upper bounds for the success probability of networks realizing single-mode gates can be derived, which hold in generality for postselected networks of arbitrary size, any number of auxiliary modes, and arbitrary photon numbers. As a corollary, the previously formulated conjecture is proven that the optimal success probability of a nonlinear sign shift without feedforward is 1/4, a gate playing the central role in the scheme of Knill-Laflamme-Milburn for quantum computation. The concept of Lagrange duality is shown to be applicable to provide rigorous proofs for such bounds, although the original problem is a difficult nonconvex problem in infinitely many objective variables. The versatility of this approach is demonstrated.  相似文献   

7.
Optimal implementation of quantum gates is crucial for designing a quantum computer. We consider the matrix representation of an arbitrary multiqubit gate. By ordering the basis vectors using the Gray code, we construct the quantum circuit which is optimal in the sense of fully controlled single-qubit gates and yet is equivalent with the multiqubit gate. In the second step of the optimization, superfluous control bits are eliminated, which eventually results in a smaller total number of the elementary gates. In our scheme the number of controlled NOT gates is O(4(n)) which coincides with the theoretical lower bound.  相似文献   

8.
Received: 6 August 1997/Revised version: 21 October 1997  相似文献   

9.
We propose a scheme to engineer a nonlocal two-qubit phase gate between two remote quantum-dot spins in cavities. As the effect of cavity decay is considered and strong coupling condition is not used, the scheme has good adaptability. Along with single qubit operations, one can perform in principle various types of distributed quantum information processing.  相似文献   

10.
The instability of the long-range positional order in smectic A and C liquid crystals under thermal fluctuations is discussed, along with the nematic-smectic A phase transition. The correlation function of the density fluctuations is calculated. It is shown that the long-range orientational order of a layered structure is stable.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 32–36, August, 1978.  相似文献   

11.
Expressions have been proposed for calculating the matrix elements of the Coulomb interaction of p and d electrons in a chosen ion of a crystal with an infinite crystal lattice. The matrix elements have been calculated at Gaussian-type orbitals. The Coulomb interaction energy per molecular unit of the ????-NaV2O5 crystal has been calculated in the ionic approximation for homogeneous and chain orderings. It has been shown that the more correct determination of the energetic favorability of one or other ordering requires calculation of the Coulomb interaction energy with an infinite crystal lattice of electrons that are at different orbitals of the ion under consideration.  相似文献   

12.
The most general duality gates were introduced by Long,Liu and Wang and named allowable generalized quantum gates (AGQGs,for short).By definition,an allowable generalized quantum gate has the form of U=YfkjsckUK,where Uk's are unitary operators on a Hilbert space H and the coefficients ck's are complex numbers with |Yfijo ck\ ∧ 1 an d 1ck| 1 for all k=0,1,...,d-1.In this paper,we prove that an AGQG U=YfkZo ck∧k is realizable,i.e.there are two d by d unitary matrices W and V such that ck=W0kVk0 (0kd-1) if and only if YfkJt 1c*|m that case,the matrices W and V are constructed.  相似文献   

13.
《Physics letters. A》2014,378(28-29):1919-1924
We present a mechanism for quantum gates where the qubits are encoded in the population distribution of two-component ultracold atoms trapped in a species-selective triple-well potential. The gate operation is a specific application of a different design for an atomtronics transistor where inter-species interaction is used to control transport, and can be realized with either individual atoms or aggregates like Bose–Einstein condensates (BEC). We demonstrate the operational principle with a static external potential, and show feasible implementation with a smooth dynamical potential.  相似文献   

14.
We construct optimized implementations of the controlled-NOT and other universal two-qubit gates that, unlike many of the previously proposed protocols, are carried out in a single step. The new protocols require tunable interqubit couplings but, in return, show a significant improvement in the quality of gate operations. We make specific predictions for coupled Josephson junction qubits and compare them with the results of recent experiments.  相似文献   

15.
We present a method to implement ultrafast two-qubit gates valid for the ultrastrong coupling and deep strong coupling regimes of light-matter interaction, considering state-of-the-art circuit quantum electrodynamics technology. Our proposal includes a suitable qubit architecture and is based on a four-step sequential displacement of the intracavity field, operating at a time proportional to the inverse of the resonator frequency. Through ab?initio calculations, we show that these quantum gates can be performed at subnanosecond time scales while keeping a fidelity above 99%.  相似文献   

16.
We show that a universal set of gates for quantum computation with optics can be quantum teleported through the use of EPR entangled states, homodyne detection, and linear optics and squeezing operations conditioned on measurement outcomes. This scheme may be used for fault-tolerant quantum computation in any optical scheme (qubit or continuous-variable). The teleportation of nondeterministic nonlinear gates employed in linear optics quantum computation is discussed.  相似文献   

17.
We present results of quasi-phase matching (QPM) interactions in one-dimensional multilayered media consisting of layers with different χ(2) nonlinearities that interchanged by linear dispersive layers. We exploit the idea of manipulating overall group delay mismatches between the various fields in each layer by appropriate choosing of the dispersive parameters and consider both multiple optical QPM interactions and preparation of pure photon states in application to quantum gates.  相似文献   

18.
Scaling ion trap quantum computation through fast quantum gates   总被引:1,自引:0,他引:1  
We propose a method to achieve scalable quantum computation based on fast quantum gates on an array of trapped ions, without the requirement of ion shuttling. Conditional quantum gates are obtained for any neighboring ions through spin-dependent acceleration of the ions from periodic photon kicks. The gates are shown to be robust to influence all the other ions in the array and insensitive to the ions' temperature.  相似文献   

19.
We propose several schemes for implementing a fast two-qubit quantum gate for neutral atoms with the gate operation time much faster than the time scales associated with the external motion of the atoms in the trapping potential. In our example, the large interaction energy required to perform fast gate operations is provided by the dipole-dipole interaction of atoms excited to low-lying Rydberg states in constant electric fields. A detailed analysis of imperfections of the gate operation is given.  相似文献   

20.
We present a formula for an infinite number of universal quantum logic gates, which are 44 by 44 unitary solutions to the Yang–Baxter (Y–B) equation. We obtain this family from a certain representation of the cyclic group of order nn. We then show that this discrete   family, parametrized by integers nn, is in fact, a small sub-class of a larger continuous   family, parametrized by real numbers θθ, of universal quantum gates. We discuss the corresponding Yang-Baxterization and related symmetries in the concomitant Hamiltonian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号