首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New cosmology     
We propose a model of our universe as a 3-sphere resting on the surface of a black hole which exists in a spacetime consisting of four space dimensions and one time dimension. The matter and energy within our universe exist as stationary solutions to the field equations in the Rindler coordinates just above the horizon of the black hole. Each solution may be though of as a standing wave consisting of a wave propagating toward the horizon superposed with its time-reversed twin propagating away from the horizon. As matter and energy from the greater five-dimensional spacetime fall into the black hole, its radius increases and our universe expands. This mechanism of expansion allows the model to describe a universe which is older than its oldest stars and homogeneous without inflation. It also predicts galaxy counts at high redshift which agree with observation.  相似文献   

2.
We have analyzed the evolution of mass of a stationary black hole in the standard FRW cosmological model. The evolution is determined specifically about the time of transition from the earlier matter to the later exotic dark energy dominated universe. It turns out that the accretion rate of matter on the black hole of mass was approximately O(1020) higher than the accretion rate of exotic dark energy at the time of transition.  相似文献   

3.
Shortly after the discovery of the Kerr metric in 1963, it was realized that a region existed outside of the black hole’s event horizon where no time-like observer could remain stationary. In 1969, Roger Penrose showed that particles within this ergosphere region could possess negative energy, as measured by an observer at infinity. When captured by the horizon, these negative energy particles essentially extract mass and angular momentum from the black hole. While the decay of a single particle within the ergosphere is not a particularly efficient means of energy extraction, the collision of multiple particles can reach arbitrarily high center-of-mass energy in the limit of extremal black hole spin. The resulting particles can escape with high efficiency, potentially serving as a probe of high-energy particle physics as well as general relativity. In this paper, we briefly review the history of the field and highlight a specific astrophysical application of the collisional Penrose process: the potential to enhance annihilation of dark matter particles in the vicinity of a supermassive black hole.  相似文献   

4.
An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. This first law of black-hole dynamics describes how a black hole grows and is regular in the limit where it ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures of both ingoing and outgoing, transverse and longitudinal gravitational radiation on and near a black hole. Corresponding energy-tensor forms of the first law involve a preferred time vector which plays the role of a stationary Killing vector. Identifying an energy flux, vanishing if and only if the horizon is null, allows a division into energy supply and work terms. The energy supply can be expressed in terms of area increase and a newly defined surface gravity, yielding a Gibbs-like equation.  相似文献   

5.
In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole.  相似文献   

6.
We discuss universal properties of axisymmetric and stationary configurations consisting of a central black hole and surrounding matter in Einstein–Maxwell theory. In particular, we find that certain physical equations and inequalities (involving angular momentum, electric charge and horizon area) are not restricted to the Kerr–Newman solution but can be generalized to the situation where the black hole is distorted by an arbitrary axisymmetric and stationary surrounding matter distribution.  相似文献   

7.
蒋青权  杨树政  李慧玲 《中国物理》2005,14(9):1736-1744
By introducing a new tortoise coordinate transformation, we investigate the quantum thermal and non-thermal radiations of a non-stationary Kerr--Newman--de Sitter black hole. The accurate location and radiate temperature of the event horizon as well as the maximum energy of the non-thermal radiation are derived. It is shown that the radiate temperature and the maximum energy are related to not only the evaporation rate, but also the shape of the event horizon, moreover the maximum energy depends on the electromagnetic potential. Finally, we use the results to reduce the non-stationary Kerr--Newman black hole, the non-stationary Kerr black hole, the stationary Kerr--Newman--de Sitter black hole, and the static Schwarzshild black hole.  相似文献   

8.
As a consequence of Birkhoff's theorem, the exterior gravitational field of a spherically symmetric star or black hole is always given by the Schwarzschild metric. In contrast, the exterior gravitational field of a rotating (axisymmetric) star differs, in general, from the Kerr metric, which describes a stationary, rotating black hole. In this paper I discuss the possibility of a quasi–stationary transition from rotating equilibrium configurations of normal matter to rotating bla ck holes.  相似文献   

9.
We investigate the effects of the accretion of phantom energy with non-zero bulk viscosity onto a Schwarzschild black hole and show that black holes accreting viscous phantom energy will lose mass rapidly compared to the non-viscous case. When matter is incorporated along with the phantom energy, the black holes meet with the same fate as bulk viscous forces dominate matter accretion. If the phantom energy has large bulk viscosity, then the mass of the black hole will reduce faster than in the small viscosity case.  相似文献   

10.
邹伯夏  颜骏  李季根 《物理学报》2010,59(11):7602-7606
应用泛函积分方法推导了量子Thirring模型中的传播子和有效势,计算了二维点物质黑洞和dilaton黑洞模型中费米物质的能量密度涨落,在相同的物理条件下,发现dilaton黑洞外费米物质的能量密度涨较大.  相似文献   

11.
In this paper, we have studied the accretion of phantom energy on a (2 + 1)-dimensional stationary Banados–Teitelboim–Zanelli (BTZ) black hole. It has already been shown by Babichev et al. that for the accretion of phantom energy onto a Schwarzschild black hole, the mass of black hole would decrease and the rate of change of mass would be dependent on the mass of the black hole. However, in the case of (2 + 1)-dimensional BTZ black hole, the mass evolution due to phantom accretion is independent of the mass of the black hole and is dependent only on the pressure and density of the phantom energy. We also study the generalized second law of thermodynamics at the event horizon and construct a condition that puts an lower bound on the pressure of the phantom energy.  相似文献   

12.
It is assumed that the singularities which occur in gravitational collapse are not visible from outside but are hidden behind an event horizon. This means that one can still predict the future outside the event horizon. A black hole on a spacelike surface is defined to be a connected component of the region of the surface bounded by the event horizon. As time increase, black holes may merge together but can never bifurcate. A black hole would be expected to settle down to a stationary state. It is shown that a stationary black hole must have topologically spherical boundary and must be axisymmetric if it is rotating. These results together with those of Israel and Carter go most of the way towards establishing the conjecture that any stationary black hole is a Kerr solution. Using this conjecture and the result that the surface area of black holes can never decrease, one can place certain limits on the amount of energy that can be extracted from black holes.  相似文献   

13.
Solution for a stationary spherically symmetric accretion of the relativistic perfect fluid with an equation of state p(rho) onto the Schwarzschild black hole is presented. This solution is a generalization of Michel solution and applicable to the problem of dark energy accretion. It is shown that accretion of phantom energy is accompanied by the gradual decrease of the black hole mass. Masses of all black holes tend to zero in the phantom energy Universe approaching the Big Rip.  相似文献   

14.
The evolution of the dark matter distribution at the Galactic center is analyzed. It is caused by the combination of gravitational scattering by stars in the Galactic nucleus (bulge) and absorption by a supermassive black hole at the center of the bulge. Attention is focused on the boundary condition on the black hole. It is shown that its form depends on the energy of dark matter particles. The modified flux of dark matter particles onto the black hole is calculated. Estimates of the amount of absorbed dark matter show that the fraction of dark matter in the total mass of the black hole may be significant. The density of dark matter at the central part of the bulge is calculated. It is shown that recently observed γ radiation from the Galactic center can be attributed to the annihilation of dark matter with this density.  相似文献   

15.
We present an exact three-dimensional massive Kiselev AdS black hole solution. This Kiselev black hole is neither perfectly fluid, nor is it the quintessential solution, but the BTZ black hole modified by the anisotropic matter. This black hole possesses an essential singularity at its radial origin and a single horizon whose radius will increase monotonically when the parameter of the anisotropic matter field ω decreases. We calculate all thermodynamic quantities and find that the first law of thermodynamics of this massive Kiselev AdS black hole can be protected, while the consistent Smarr formula is only held in the extended thermodynamic phase space. After examining the sign of free energy, we conclude that there is no Hawking-Page transition since the massive Kiselev AdS black hole phase is always thermodynamically favored. Moreover, we study the phase transition between the Kiselev AdS black hole and BTZ black hole by considering the matchings for their temperature. We find that the Kiselev AdS black hole is still a thermodynamically more preferred phase, because it always has a smaller amount of free energy than the BTZ black hole, which seems to indicate that the anisotropic matter field may emerge naturally in BTZ black hole spacetime under some thermal fluctuations. We also show a first order phase transition between the Kiselev AdS black hole phase with -1w -1/2 and the black hole phase with -1/2w0. As the Kiselev AdS black hole has some notable features on the phase transition of black holes in three dimensions, it provides important clues to further investigate these both surprising and similar behaviors in four and higher dimensions.  相似文献   

16.
In this paper, we examine the effect of dark matter to a Kerr black hole of mass m. The metric is derived using the Newman-Janis algorithm, where the seed metric originates from the Schwarzschild black hole surrounded by a spherical shell of dark matter with mass M and thickness Δrs. The seed metric is also described in terms of a piecewise mass function with three different conditions. Specializing in the non-trivial case where the observer resides inside the dark matter shell, we analyzed how the effective mass of the black hole environment affects the basic black hole properties. A high concentration of dark matter near the rotating black hole is needed to have considerable deviations on the horizons, ergosphere, and photonsphere radius. The time-like geodesic, however, shows more sensitivity to deviation even at very low dark matter density. Further, the location of energy extraction via the Penrose process is also shown to remain unchanged. With how the dark matter distribution is described in the mass function, and the complexity of how the shadow radius is defined for a Kerr black hole, deriving an analytic expression for Δrs as a condition for notable dark matter effects to occur remains inconvenient.  相似文献   

17.
王世良  荆继良 《中国物理》2001,10(3):234-239
By using Brown-York quasilocal energy theory we calculate the quasilocal energy of a stationary axisymmetic EMDA black hole and explore the universality of Martinez's conjecture in string theory. We show that the energy is positive and monotonically decreases to the ADM mass at spatial infinity, and the Martinez's conjecture, the Brown-York quasilocal energy at the outer horizon reduces to twice its irreducible mass, is still valid for stationary axisymmetric EMDA black hole. From the result we also find that the Kerr-Sen spacetime keeps up with Martinez's conjecture. This is different from the Bose-Naing result that the quasilocal energy of the Kerr-Sen spacetime does not approach the Martinez's conjecture.  相似文献   

18.
Applying Parikh's quantum tunneling method, the tunneling characteristics of stationary Kaluza-Klein black hole is researched. The result shows that the tunneling rate across the event horizon of the black hole is relevant to the change of Bekenstein-Hawking entropy and the derived radiation spectrum deviates from pure thermal when the self-gravitation, energy conservation and angular momentum conservation are taken into consideration. Finally, we use the obtained results to reduce to stationary Kerr black hole and static Swarzschild black hole, and find that only ignoring the spectrum at higher energies the tunneling radiation spectrum is consistent with Hawking pure thermal one. PACS:97.60.Lf,04.70._s  相似文献   

19.
The area of the event horizon round a rotating black hole will increase in the presence of a non-axisymmetric or time dependent perturbation. If the perturbation is a matter field, the area increase is related to the fluxes of energy and of angular momentum into the black hole in such a way as to maintain the formula for the area in the Kerr solution. For purely gravitational perturbations one cannot define angular momentum locally but one can use the area increase and the expression for area in terms of mass and angular momentum to calculate the slowing down of a black hole caused by a non-axisymmetric distribution of matter at a distance. It seems that the coupling between the rotation of a black hole and the orbit of a particle going round it can be significant if the angular momentum of the black hole is close to its maximum possible value and if the angular velocity of the particle is nearly equal to that of the black hole.Alfred P. Sloan Research Fellow, supported in part by the National Science Foundation.  相似文献   

20.
In this paper, we consider both Einstein's theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation) analogs of the energy-momentum definition of Møller in order to explicitly evaluate the energy distribution (due to matter and fields including gravity) associated with a general black hole model which includes several well-known black holes. To calculate the special cases of energy distribution, here we consider eight different types of black hole models such as anti-de Sitter Cmetric with spherical topology, charged regular black hole, conformal scalar dyon black hole, dyadosphere of a charged black hole, regular black hole, charged topological black hole, charged massless black hole with a scalar field, and the Schwarzschild-de Sitter space-time. Our teleparallel gravitational result is also independent of the teleparallel dimensionless coupling constant, which means that it is valid not only in teleparallel equivalent of general relativity but also in any teleparallel model. This paper also sustains (a) the importance of the energy-momentum definitions in the evaluation of the energy distribution of a given spacetime and (b) the viewpoint of Lessner that the Møller energy-momentum complex is the powerful concept to calculate energy distribution in a given space-time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号