首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gold nanoparticles were electrodeposited directly for the first time from a new electrolyte system: water-in-ionic liquid (W/IL) microemulsion. The electrochemical behavior of Au(Ш) in W/IL microemulsion was investigated. The cyclic voltammetry (CV) result of Au(Ш) shows a pair of redox peak. The effect of precursor apparent concentration on the reduction peak current density is similar to that in homogeneous solution such as aqueous solution. The effect of scan rate on the reduction peak current density is different from that in homogeneous solution. Linear-sweep voltammograms result for a rotating disk electrode in the W/IL microemulsion suggests that the reduction is kinetically limited and not transport limited. And also the activation energy of the reaction was calculated to be 26.7 KJ mol?1. The gold electrodeposits were characterized by scanning electron microscopy and X-ray diffraction. It is found that the gold electrodeposits are face-centered cubic and nanosized. Furthermore, the potential mechanism for the electrode reaction was proposed. In addition, the electrochemical properties of the gold nanoparticles were researched through the electro-oxidation of glycerol. The CV and electrochemical impedance spectroscopy studies demonstrate that the gold nanoparticles electrodeposited from W/IL microemulsion have much higher electro-catalytic activities than bare gold for glycerol oxidation.  相似文献   

2.
Various metal nanoparticles including base metal were produced by a brief accelerated electron beam irradiation of 1-alkyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)amide room-temperature ionic liquid without a stabilizing agent, which is usually employed so as to prevent aggregation.  相似文献   

3.
Anisotropic thermally reversible ionogels of sodium laurate (SL) were prepared in the first discovered room-temperature ionic liquid (RTIL), ethylammonium nitrate (EAN). Polarized optical microscope images indicate that the gels are birefringent, illuminating the presence of anisotropic structures. Small-angle X-ray scattering results reveal that SL and lauric acid (LA) molecules are arranged to form lamellar structures, but no SL crystallites were confirmed by the X-ray diffraction measurements. With an increase of the SL concentration, the interlayer distance decreases. Rheological measurements indicate that the anisotropic ionogels are highly viscoelastic and the storage modulus (G') increases with an increase of the SL concentration in EAN. Electrochemical measurements indicate that the anisotropic ionogels may have potential applications in electrochemical fields. The intermolecular hydrogen bond as well as the solvatophobic interaction of SL and LA formed by a chemical reaction, CH(3)(CH(2))(10)COONa + CH(3)CH(2)NH(3)NO(3) --> CH(3)CH(2)NH(2) upward arrow + NaNO(3) downward arrow + CH(3)(CH(2))(10)COOH, can play a role in the formation of three-dimensional networks having lamellar structures which are responsible for the anisotropic ionogels. The formation of anisotropic ionogels by surfactants in RTILs could be a new phenomenon, but this is not a very classic case of organogels.  相似文献   

4.
Gold nanoparticles have been electrodeposited on an electrode through electrogeneration at an ITO|AuCl4? solution in an ionic liquid|aqueous electrolyte three-phase junction. The electrodeposition was carried out by inverted double-pulse potential chronoamperometry. The direct reduction of AuCl4? ions at the electrode is followed by a counterion transfer through the liquid|liquid interface. Contrary to the electrodeposition from a single ionic liquid phase, scanning electron microscopy reveals that the shape of the resulting nanoparticles is highly angular and well-developed with a diameter of 110 ± 30 nm. Catalytic oxidation of glucose on the modified electrode is demonstrated.  相似文献   

5.
In this letter we show that nanocrystalline aluminium can be electrodeposited in the Lewis acidic ionic liquid based on AlCl3 (60 mol%) and 1-(2-methoxyethyl)-3-methylimidazolium chloride ([MoeMIm]Cl) (40 mol%). The study comprised cyclic voltammetry, potentiostatic polarization, and SEM and XRD measurements. The methoxy group in the side chain of the imidazolium cation significantly influences the electrodeposition pathway of Al in comparison to [EMIm]Cl/AlCl3. Cyclic voltammetry shows a significant current loop attributed to nucleation. Shiny Al layers are obtained with an average crystallite size of about 40 nm.  相似文献   

6.
Investigation on alkali fluoride-HF system has been initiated in the 19th century. The technique is currently utilized in fluorine-chemical industry. But, the problem is that this system readily releases hazardous HF. Although organic base, e.g., amine, with HF, which is mainly applied to fluorination treatment for organic compound, reduces the HF release, the solution still requires careful handling because of limited amount of free HF. Recently family of fluorohydrogenate room-temperature ionic liquid, XF(HF)2.3, that consists of heterocyclic ammonium cation (X+), F(HF)2, and F(HF)3, has gotten a lot of attentions due to the interesting physicochemical properties such as negligible vapor pressure (<7.5 × 10−3 Torr (=1 Pa) at 298 K), high conductivity, and low corrosiveness. This novel solvent will greatly contribute to development of fluorine chemistry. In this article, fundamental techniques and physicochemical data on the fluorohydrogenate RTIL are summarized, and molecular science in the dialkylimidazolium fluorohydrogenates leading to the understanding of the unusual properties is reviewed based on recent experimental and theoretical considerations.  相似文献   

7.
Vibrational energy relaxation (VER) dynamics of a diatomic solute in ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate (EMI(+)PF(6) (-)) are studied via equilibrium and nonequilibrium molecular dynamics simulations. The time scale for VER is found to decrease markedly with the increasing solute dipole moment, consonant with many previous studies in polar solvents. A detailed analysis of nonequilibrium results shows that for a dipolar solute, dissipation of an excess solute vibrational energy occurs almost exclusively via the Lennard-Jones interactions between the solute and solvent, while an oscillatory energy exchange between the two is mainly controlled by their electrostatic interactions. Regardless of the anharmonicity of the solute vibrational potential, VER becomes accelerated as the initial vibrational energy increases. This is attributed primarily to the enhancement in variations of the solvent force on the solute bond, induced by large-amplitude solute vibrations. One interesting finding is that if a time variable scaled with the initial excitation energy is employed, dissipation dynamics of the excess vibrational energy of the dipolar solute tend to show a universal behavior irrespective of its initial vibrational state. Comparison with water and acetonitrile shows that overall characteristics of VER in EMI(+)PF(6) (-) are similar to those in acetonitrile, while relaxation in water is much faster than the two. It is also found that the Landau-Teller theory predictions for VER time scale obtained via equilibrium simulations of the solvent force autocorrelation function are in reasonable agreement with the nonequilibrium results.  相似文献   

8.
In this paper, a facile immobilization of copper hexacyanoferrate nanoparticles (CuHCFNP) on a paraffin wax-impregnated graphite electrode (PIGE) was carried out using the room-temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) as an ionic binder. The characteristics of the CuHCFNP/EMIMBF4 gel-modified electrode were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques, and the modified electrode morphology was also characterized using field emission scanning electron microscopy (FESEM). The electrocatalytic behavior of butylated hydroxyl anisole (BHA) at the modified electrode has been investigated in 0.1 M KNO3 in static and dynamic conditions. Under the optimum conditions, the oxidation peak current was proportional to the BHA concentration in the range from 1.5 to 1000 μM with a detection limit of 0.5 μM (S/N = 3). The proposed method was applied to determine BHA content in real samples with satisfactory results.
Graphical abstract ?
  相似文献   

9.
Thin films of MnO(2) nanoparticles were grown using the layer-by-layer method with poly(diallyldimetylammonium) as the intercalated layer. The film growth was followed by UV-vis, electrochemical quartz crystal microbalance (EQCM), and atomic force microscopy. Linear growth due to electrostatic immobilization of layers was observed up to 30 bilayers, but electrical connectivity was maintained only for 12 MnO(2)/PPDA bilayers. The electrochemical characterization of this film in 1-butyl-2,3-dimethyl-imidazolium (BMMI) bis(trifluoromethanesulfonyl)imide (TFSI) (BMMITFSI) with and without addition of a lithium salt indicated a higher electrochemical response of the nanostructured electrode in the lithium-containing electrolyte. On the basis of EQCM experiments, it was possible to confirm that the charge compensation process is achieved mainly by the TFSI anion at short times (<2 s) and by BMMI and lithium cations at longer times. The fact that large ions like TFSI and BMMI participate in the electroneutrality is attributed to the redox reaction that occurs at the superficial sites and to the high concentration of these species compared to that of lithium cations.  相似文献   

10.
A principally new exploit of ionic liquids as an alternative reaction medium in the synthesis of cyano-bridged coordination-polymer nanoparticles is reported. Stable colloid solutions containing nanoparticles of cyano-bridged molecule-based magnets, M)[Fe(CN)6]2/[RMIM][BF4] (M2+=Ni, Cu, Co) and Fe4[Fe(CN)6]3/[RMIM][BF4] (R=1-butyl (BMIM), 1-decyl (DMIM)), were prepared in the corresponding 1-R-3-methylimidazolium tetrafluoroborate [RMIM][BF4], which acts as both a stabilising agent and a solvent. By varying the length of the N-alkyl chain on the imidazolium cation of [RMIM]+ and the temperature, the growing process can be controlled to produce nanoparticles of different sizes. By studying the magnetic properties of frozen colloids it is shown that the relaxation of magnetisation is strongly influenced by interparticle interactions, which leads to the appearance of spin-glass-like dynamics in these systems.  相似文献   

11.
Ogura T  Takao K  Sasaki K  Arai T  Ikeda Y 《Inorganic chemistry》2011,50(21):10525-10527
Reduction of U(VI)O(2)Cl(4)(2-) in a mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and its chloride at E°' = -0.996 V vs Fc/Fc(+) and 298 K affords U(V)O(2)Cl(4)(3-), which is kinetically stable and exhibits typical character of U(V) in the UV-vis-NIR absorption spectrum.  相似文献   

12.
13.
Highly reversible, safe lithium secondary batteries that use imidazolium-cation-based room-temperature ionic liquid as an electrolyte and lithium metal as an anode material were realized by the molecular design. To achieve higher reduction stability, an electron-donating substituent was introduced to promote charge delocalization in the imidazolium cation of room-temperature ionic liquids.  相似文献   

14.
Brondani D  Scheeren CW  Dupont J  Vieira IC 《The Analyst》2012,137(16):3732-3739
Halloysite clay nanotubes were used as a support for the immobilization of the enzyme peroxidase from clover sprouts (Trifolium), and employed together with platinum nanoparticles in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (Pt-BMI·PF(6)) in the development of a new biosensor for the determination of catecholamines by square-wave voltammetry. Under optimized conditions, the analytical curves showed detection limits of 0.05, 0.06, 0.07, 0.12 μM for dopamine, isoproterenol, dobutamine and epinephrine, respectively. The biosensor demonstrated high sensitivity, good repeatability and reproducibility, and long-term stability (18% decrease in response over 150 days). A recovery study of dopamine in pharmaceutical samples gave values from 97.5 to 101.4%. The proposed biosensor was successfully applied to the determination of dopamine in pharmaceutical samples, with a maximum relative error of ±1.0% in relation to the standard (spectrophotometric) method. The good analytical performance of the proposed method can be attributed to the efficient immobilization of the peroxidase in the nanoclay, and the facilitation of electron transfer between the protein and the electrode surface due to the presence of the Pt nanoparticles and ionic liquid.  相似文献   

15.
The nature of the interactions between a representative room-temperature ionic liquid, namely 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM][BF(4)]) and a common organic solvent, acetonitrile (CH(3)CN) has been investigated by means of Brillouin light scattering, over the whole concentration range and in the temperature range from -20 to 45 degrees C. Negative deviations from the ideal behavior of both molar volumes and adiabatic compressibility have been observed. This result has been interpreted within the framework of a well-established theoretical model, namely a nonadditive hard-sphere mixture. Despite that similar findings were rationalized in terms of enhanced interactions between molecules, a more detailed analysis of excess thermodynamic functions indicates that they are mainly due to excluded volume effects and that the differences in local intermolecular interactions act as higher order contributions: we have found that this can be a general feature of liquid mixtures. On this basis we present a reconsideration for excess thermodynamic data and for their role in providing direct information on intermolecular interactions.  相似文献   

16.
The cyclic voltammetry responses and the redox switching dynamics of poly(3,4-ethylenedioxythiophene) (PEDOT) in a room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)amide (EMImTf2N), were investigated. The shape of the cyclic voltammograms showed two anodic and two cathodic peaks. These peak currents varied linearly with the scan rate indicating a thin-layer behaviour. No memory effects were observed during the cyclic voltammetry experiments in this ionic liquid. On the other hand, the redox switching dynamics of PEDOT were studied by means of potential step experiments. The analysis of chronocoulograms in term of RC-circuits indicated that the time dependence of the charge transferred during the potential step showed two time constants. These results were consistent with the postulated structure or morphology of the PEDOT film which contained two types of coexisting zones: a compact and an open structures.  相似文献   

17.
18.
We investigate the structure of the [bmim][Tf(2)N]/silica interface by simulating the indentation of a thin (4 nm) [bmim][Tf(2)N] film by a hard nanometric tip. The ionic liquid/silica interface is represented in atomistic detail, while the tip is modelled by a spherical mesoscopic particle interacting via an effective short-range potential. Plots of the normal force (F(z)) on the tip as a function of its distance from the silica surface highlight the effect of weak layering in the ionic liquid structure, as well as the progressive loss of fluidity in approaching the silica surface. The simulation results for F(z) are in near-quantitative agreement with new AFM data measured on the same [bmim][Tf(2)N]/silica interface under comparable thermodynamic conditions.  相似文献   

19.
The stability of a variety of lyotropic liquid crystals formed by a number of polyoxyethylene nonionic surfactants in the room-temperature ionic liquid ethylammonium nitrate (EAN) is surveyed and reported. The pattern of self-assembly behaviour and mesophase formation is strikingly similar to that observed in water, even including the existence of a lower consolute boundary or cloud point. The only quantitative difference from water is that longer alkyl chains are necessary to drive the formation of liquid crystalline mesophases in EAN, suggesting that a rich pattern of "solvophobic" self-assembly should exist in this solvent.  相似文献   

20.
We report here for the first time on the use of a droplet of water-immiscible ionic liquid (IL) containing metallic precursor confined onto electrode surface as new micro-media for cost-effective electrodeposition of platinum nanoparticles. 1-n-Butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), a typical water-immiscible IL, is found to be able to form a stable droplet onto electrode surface in which the metallic precursor (i.e., chloroplatinic acid hexahydrate (H2PtCl6)) for electrodeposition of Pt nanoparticles can be stably dissolved when the prepared electrode is used in aqueous solutions. The electrodeposition of Pt nanoparticles is carried out in the aqueous solution of 0.1 M KPF6 with the H2PtCl6-containing IL droplet-confined glassy carbon electrode as working electrode at −1.5 V vs. Ag/AgCl. The Pt nanoparticles electrodeposited from the IL droplet micro-medium are characterized to have a uniform morphology and to possess an excellent electrocatalytic activity toward the oxidation of methanol. Compared with the existing methods for the electrodeposition of metals with ILs as the solvents, the method demonstrated here requires a less amount of ILs and metallic precursors and is thus anticipated to provide a new and cost-effective approach to the deposition of metallic nanoparticles onto conducting substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号