首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO(2) molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.  相似文献   

2.
We report, for the first time, a calculation of the isotropic NMR chemical shift of 129Xe in the cages of clathrate hydrates Structures I and II. We generate a shielding surface for Xe in the clathrate cages by quantum mechanical calculations. Subsequently this shielding surface is employed in canonical Monte Carlo simulations to find the average isotropic Xe shielding values in the various cages. For the two types of cages in clathrate hydrate Structure I, we find the intermolecular shielding values [sigma(Xe@5(12) cage)-sigma(Xe atom)]=-214.0 ppm, and [sigma(Xe@5(12)6(2) cage)-sigma(Xe atom)]=-146.9 ppm, in reasonable agreement with the values -242 and -152 ppm, respectively, observed experimentally by Ripmeester and co-workers between 263 and 293 K. For the 5(12) and 5(12)6(4) cages of Structure II we find [sigma(Xe@5(12) cage)-sigma(Xe atom)]=-206.7 ppm, and [sigma(Xe@5(12)6(4) cage)-sigma(Xe atom)]=-104.7 ppm, also in reasonable agreement with the values -225 and -80 ppm, respectively, measured in a Xe-propane type II mixed clathrate hydrate at 77 and 220-240 K by Ripmeester et al.  相似文献   

3.
A neutron diffraction study was performed on the CD(4) : D(2)O structure H clathrate hydrate to refine its CD(4) fractional cage occupancies. Samples of ice VII and hexagonal (sH) methane hydrate were produced in a Paris-Edinburgh press and in situ neutron diffraction data collected. The data were analyzed with the Rietveld method and yielded average cage occupancies of 3.1 CD(4) molecules in the large 20-hedron (5(12)6(8)) cages of the hydrate unit cell. Each of the pentagonal dodecahedron (5(12)) and 12-hedron (4(3)5(6)6(3)) cages in the sH unit cell are occupied with on average 0.89 and 0.90 CD(4) molecules, respectively. This experiment avoided the co-formation of Ice VI and sH hydrate, this mixture is more difficult to analyze due to the proclivity of ice VI to form highly textured crystals, and overlapping Bragg peaks of the two phases. These results provide essential information for the refinement of intermolecular potential parameters for the water-methane hydrophobic interaction in clathrate hydrates and related dense structures.  相似文献   

4.
The sI methane clathrate hydrate consists of methane gas molecules encapsulated as dodecahedron (5(12)CH(4)) and tetrakaidecahedron (5(12)6(2)CH(4)) water cages. The characterization of the stability of these cages is crucial to an understanding of the mechanism of their formation. In the present work, we perform calculations using density functional theory to calculate interaction energies, free energies, and reactivity indices of these cages. The contributions from polarization functions to interaction energies is more than diffuse functions from Pople basis sets, though both functions from the correlation-consistent basis sets contribute significantly to interaction energies. The interaction energies and free energies show that the formation of the 5(12)CH(4) cage (from the 5(12) cage) is more favored compared to the 5(12)6(2)CH(4) cage (from the 5(12)6(2) cage). The pressure-dependent study shows a spontaneous formation of the 5(12)CH(4) cage at 273 K (P ≥ 77 bar) and the 5(12)6(2)CH(4) cage (P = 100 bar). The reactivity of the 5(12)CH(4) cage is similar to that of the 5(12) cage, but the 5(12)6(2)CH(4) cage is more reactive than the 5(12)6(2) cage.  相似文献   

5.
The sI type methane clathrate hydrate lattice is formed during the process of nucleation where methane gas molecules are encapsulated in the form of dodecahedron (5(12)CH(4)) and tetrakaidecahedron (5(12)6(2)CH(4)) water cages. The characterization of change in the vibrational modes which occur on the encapsulation of CH(4) in these cages plays a key role in understanding the formation of these cages and subsequent growth to form the hydrate lattice. In this present work, we have chosen the density functional theory (DFT) using the dispersion corrected B97-D functional to characterize the Raman frequency vibrational modes of CH(4) and surrounding water molecules in these cages. The symmetric and asymmetric C-H stretch in the 5(12)CH(4) cage is found to shift to higher frequency due to dispersion interaction of the encapsulated CH(4) molecule with the water molecules of the cages. However, the symmetric and asymmetric O-H stretch of water molecules in 5(12)CH(4) and 5(12)6(2)CH(4) cages are shifted towards lower frequency due to hydrogen bonding, and interactions with the encapsulated CH(4) molecules. The CH(4) bending modes in the 5(12)CH(4) and 5(12)6(2)CH(4) cages are blueshifted, though the magnitude of the shifts is lower compared to modes in the high frequency region which suggests bending modes are less affected on encapsulation of CH(4). The low frequency librational modes which are collective motion of the water molecules and CH(4) in these cages show a broad range of frequencies which suggests that these modes largely contribute to the formation of the hydrate lattice.  相似文献   

6.
Methane storage in structure H (sH) clathrate hydrates is attractive due to the relatively higher stability of sH as compared to structure I methane hydrate. The additional stability is gained without losing a significant amount of gas storage density as happens in the case of structure II (sII) methane clathrate. Our previous work has showed that the selection of a specific large molecule guest substance (LMGS) as the sH hydrate former is critical in obtaining the optimum conditions for crystallization kinetics, hydrate stability, and methane content. In this work, molecular dynamics simulations are employed to provide further insight regarding the dependence of methane occupancy on the type of the LMGS and pressure. Moreover, the preference of methane molecules to occupy the small (5(12)) or medium (4(3)5(6)6(3)) cages and the minimum cage occupancy required to maintain sH clathrate mechanical stability are examined. We found that thermodynamically, methane occupancy depends on pressure but not on the nature of the LMGS. The experimentally observed differences in methane occupancy for different LMGS may be attributed to the differences in crystallization kinetics and/or the nonequilibrium conditions during the formation. It is also predicted that full methane occupancies in both small and medium clathrate cages are preferred at higher pressures but these cages are not fully occupied at lower pressures. It was found that both small and medium cages are equally favored for occupancy by methane guests and at the same methane content, the system suffers a free energy penalty if only one type of cage is occupied. The simulations confirm the instability of the hydrate when the small and medium cages are empty. Hydrate decomposition was observed when less than 40% of the small and medium cages are occupied.  相似文献   

7.
Nonspherical cages in inclusion compounds can result in non‐uniform motion of guest species in these cages and anisotropic lineshapes in NMR spectra of the guest. Herein, we develop a methodology to calculate lineshape anisotropy of guest species in cages based on molecular dynamics simulations of the inclusion compound. The methodology is valid for guest atoms with spin 1/2 nuclei and does not depend on the temperature and type of inclusion compound or guest species studied. As an example, the nonspherical shape of the structure I (sI) clathrate hydrate large cages leads to preferential alignment of linear CO2 molecules in directions parallel to the two hexagonal faces of the cages. The angular distribution of the CO2 guests in terms of a polar angle θ and azimuth angle ? and small amplitude vibrational motions in the large cage are characterized by molecular dynamics simulations at different temperatures in the stability range of the CO2 sI clathrate. The experimental 13C NMR lineshapes of CO2 guests in the large cages show a reversal of the skew between the low temperature (77 K) and the high temperature (238 K) limits of the stability of the clathrate. We determine the angular distributions of the guests in the cages by classical MD simulations of the sI clathrate and calculate the 13C NMR lineshapes over a range of temperatures. Good agreement between experimental lineshapes and calculated lineshapes is obtained. No assumptions regarding the nature of the guest motions in the cages are required.  相似文献   

8.
This paper presents a systematic molecular simulation study of the heterogeneous crystal growth of methane hydrate sII from supersaturated aqueous methane solutions. The growth of sII hydrate on the [001] crystallographic face is achieved through utilization of a recently proposed methodology, and rates of crystal growth of 1 A/ns were sustained for the molecular models and specific conditions employed in this work. Characteristics of the crystals grown as well as properties and structure of the interface are examined. Water cages with a 5(12)6(3) arrangement, which are improper to both sI and sII structures, are identified during the heterogeneous growth of sII methane hydrate. We show that the growth of a [001] face of sII hydrate can produce an sI crystalline structure, confirming that cross-nucleation of methane hydrate structures is possible. Defects consisting of two methane molecules trapped in large 5(12)6(4) cages and water molecules trapped in small and large cages are observed, where in one instance we have found a large 5(12)6(4) cage containing three water molecules.  相似文献   

9.
We perform molecular dynamics simulations (up to 6 ns) for the structure I clathrate hydrates of linear molecules CS, CS(2), OCS, and C(2)H(2) in large cages at different temperatures in the stability range to determine the angular distribution and dynamics of the guests in the large cages. The long axes of linear guest molecules in the oblate large structure I clathrate hydrate cages are primarily confined near the equatorial plane of the cage rather than axial regions. This non-uniform spatial distribution leads to well-known anisotropic lineshapes in the solid-state NMR spectra of the guest species. We use the dynamic distribution of guest orientations in the cages during the MD simulations at different temperatures to predict the (13)C NMR powder lineshapes of the guests in the large cages. The length of the guests and intermolecular interactions of the guests in the water cages determine the angular distribution and the mobility of the guests in the sI large cages at different temperatures. At low temperatures the range of motion of the guests in the cages are limited and this is reflected in the skew of the predicted (13)C lineshapes. As the guest molecules reach the fast motion limit at higher temperatures, the lineshapes for CS, OCS, and C(2)H(2) are predicted to have the "standard" powder lineshapes of guest molecules.  相似文献   

10.
Molecular dynamics simulations of the pure structure II tetrahydrofuran clathrate hydrate and binary structure II tetrahydrofuran clathrate hydrate with CO(2), CH(4), H(2)S, and Xe small cage guests are performed to study the effect of the shape, size, and intermolecular forces of the small cages guests on the structure and dynamics of the hydrate. The simulations show that the number and nature of the guest in the small cage affects the probability of hydrogen bonding of the tetrahydrofuran guest with the large cage water molecules. The effect on hydrogen bonding of tetrahydrofuran occurs despite the fact that the guests in the small cage do not themselves form hydrogen bonds with water. These results indicate that nearest neighbour guest-guest interactions (mediated through the water lattice framework) can affect the clathrate structure and stability. The implications of these subtle small guest effects on clathrate hydrate stability are discussed.  相似文献   

11.
Endohedral CH(4)@(H(2)O)(n) (n = 16, 18, 20, 22, 24) clusters with standard and nonstandard cage configurations containing four-, five-, six-, seven-membered rings were generated by spiral algorithm and were systematically explored using DFT-D methods. The geometries of all isomers were optimized in vacuum and aqueous solution. In vacuum, encapsulation of methane molecules can stabilize the hollow (H(2)O)(n) cage by 2.31~5.44 kcal/mol; but the endohedral CH(4)@(H(2)O)(n) cages are still less stable than the pure (H(2)O)(n) clusters. Aqueous environment could promote the stabilities of the hollow (H(2)O)(n) cages as well as the CH(4)@(H(2)O)(n) clusters, and the CH(4)@(H(2)O)(n) clusters possess larger stabilization energies with regard to the pure (H(2)O)(n) clusters except for n = 24. The lowest energy structures of the CH(4)@(H(2)O)(20) and CH(4)@(H(2)O)(24) cages are identical to the building units in the crystalline sI clathrate hydrate. All of the low-energy cages (including both regular and irregular ones) have large structural similarity and can be connected by "dimer-insertion" operation and Stone-Wales transformation. Our calculation also showed that in the range of cluster size n = 16-24, the relative energies of cage isomers tend to decrease with increasing number of the adjacent pentagons in the oxygen skeleton structures. In addition to the regular endohedral CH(4)@(H(2)O)(20) and CH(4)@(H(2)O)(24) cage structures, some nonstandard CH(4)@(H(2)O)(n) (n = 18, 20, 22, 24) cages have lower energies and might appear during nucleation process of methane hydrate. For the methane molecules in these low-energy cage isomers, we found that the C-H symmetric stretching frequencies show a red-shift trend and the (13)C NMR chemical shifts generally move toward negative values as the cavity size increases. These theoretical results are comparable to the available experimental data and might help experimental identification of the endohedral water cages during nucleation.  相似文献   

12.
13.
Using molecular dynamics simulations on the microsecond time scale, we investigate the nucleation and growth mechanisms of CO(2) hydrates in a water/CO(2)/silica three-phase system. Our simulation results indicate that the CO(2) hydrate nucleates near the three-phase contact line rather than at the two-phase interfaces and then grows along the contact line to form an amorphous crystal. In the nucleation stage, the hydroxylated silica surface can be understand as a stabilizer to prolong the lifetime of adsorbed hydrate cages that interact with the silica surface by hydrogen bonding, and the adsorbed cages behave as the nucleation sites for the formation of an amorphous CO(2) hydrate. After nucleation, the nucleus grows along the three-phase contact line and prefers to develop toward the CO(2) phase as a result of the hydrophilic nature of the modified solid surface and the easy availability of CO(2) molecules. During the growth process, the population of sI cages in the formed amorphous crystal is found to increase much faster than that of sII cages, being in agreement with the fact that only the sI hydrate can be formed in nature for CO(2) molecules.  相似文献   

14.
15.
Through reliable first-principles computations, we have demonstrated the impact of CO2 molecules enclathration on the stability of sI clathrate hydrates. Given the delicate balance between the interaction energy components (van der Waals, hydrogen bonds) present on such systems, we follow a systematic bottom-up approach starting from the individual 512 and 51262 sI cages, up to all existing combinations of two-adjacent sI crystal cages to evaluate how such clathrate-like models perform on the evaluation of the guest-host and first-neighbors inter-cage effects, respectively. Interaction and binding energies of the CO2 occupation of the sI cages were computed using DF-MP2 and different DFT/DFT−D electronic structure methodologies. The performance of selected DFT functionals, together with various semi-classical dispersion corrections schemes, were validated by comparison with reference ab initio DF-MP2 data, as well as experimental data from x-ray and neutron diffraction studies available. Our investigation confirms that the inclusion of the CO2 in the cage/s is an energetically favorable process, with the CO2 molecule preferring to occupy the large 51262 sI cages compared to the 512 ones. Further, the present results conclude on the rigidity of the water cages arrangements, showing the importance of the inter-cage couplings in the cluster models under study. In particular, the guest-cage interaction is the key factor for the preferential orientation of the captured CO2 molecules in the sI cages, while the inter-cage interactions seems to cause minor distortions with the CO2 guest neighbors interactions do not extending beyond the large 51262 sI cages. Such findings on these clathrate-like model systems are in accord with experimental observations, drawing a direct relevance to the structural stability of CO2@sI clathrates.  相似文献   

16.
We report, for the first time, a prediction of the line shapes that would be observed in the (129)Xe nuclear magnetic resonance (NMR) spectrum of xenon in the cages of clathrate hydrates. We use the dimer tensor model to represent pairwise contributions to the intermolecular magnetic shielding tensor for Xe at a specific location in a clathrate cage. The individual tensor components from quantum mechanical calculations in clathrate hydrate structure I are represented by contributions from parallel and perpendicular tensor components of Xe-O and Xe-H dimers. Subsequently these dimer tensor components are used to reconstruct the full magnetic shielding tensor for Xe at an arbitrary location in a clathrate cage. The reconstructed tensors are employed in canonical Monte Carlo simulations to find the Xe shielding tensor component along a particular magnetic field direction. The shielding tensor component weighted according to the probability of finding a crystal fragment oriented along this direction in a polycrystalline sample leads to a predicted line shape. Using the same set of Xe-O and Xe-H shielding functions and the same Xe-O and Xe-H potential functions we calculate the Xe NMR spectra of Xe atom in 12 distinct cage types in clathrate hydrates structures I, II, H, and bromine hydrate. Agreement with experimental spectra in terms of the number of unique tensor components and their relative magnitudes is excellent. Agreement with absolute magnitudes of chemical shifts relative to free Xe atom is very good. We predict the Xe line shapes in two cages in which Xe has not yet been observed.  相似文献   

17.
Recent reports indicate that the crystallization of clathrate hydrates occurs in multiple steps that involve amorphous intermediates and metastable clathrate crystals. The elucidation of the reaction coordinate for clathrate crystallization requires the use of order parameters able to identify the reactants, products, and intermediates in the crystallization pathway. Nevertheless, existing order parameters cannot distinguish between amorphous and crystalline clathrates or between different clathrate crystals. In this work, we present the first set of order parameters that discern between the sI and sII clathrate crystals, the amorphous clathrates, the blob of solvent-separated guests and the liquid solution. These order parameters can be used to monitor the advance of the crystallization and for the efficient implementation of methods to sample the rare clathrate nucleation events in molecular simulations. We illustrate the use of these order parameters in the analysis of the growth and the dissolution of clathrate crystals and the spontaneous nucleation and growth of clathrates under conditions of high supercooling.  相似文献   

18.
To understand host–guest interactions of hydrocarbon clathrate hydrates, we investigated the crystal structure of simple and binary clathrate hydrates including butane (n‐C4H10 or iso‐C4H10) as the guest. Powder X‐ray diffraction (PXRD) analysis using the information on the conformation of C4H10 molecules obtained by molecular dynamics (MD) simulations was performed. It was shown that the guest n‐C4H10 molecule tends to change to the gauche conformation within host water cages. Any distortion of the large 51264 cage and empty 512 cage for the simple iso‐C4H10 hydrate was not detected, and it was revealed that dynamic disorder of iso‐C4H10 and gauchenC4H10 were spherically extended within the large 51264 cages. It was indicated that structural isomers of hydrocarbon molecules with different van der Waals diameters are enclathrated within water cages in the same way owing to conformational change and dynamic disorder of the molecules. Furthermore, these results show that the method reported herein is applicable to structure analysis of other host–guest materials including guest molecules that could change molecular conformations.  相似文献   

19.
The stability of structure H (sH) carbon dioxide clathrate hydrates at three temperature-pressure conditions are determined by molecular dynamics simulations on a 3x3x3 sH unit cell replica. Simulations are performed at 100 K at ambient pressure, 273 K at 100 bars and also 300 K and 5.0 kbars. The small and medium cages of the sH unit cell are occupied by a single carbon dioxide guest and large cage guest occupancies of 1-5 are considered. Radial distribution functions are given for guests in the large cages and unit cell volumes and configurational energies are studied as a function of large cage CO(2) occupancy. Free energy calculations are carried out to determine the stability of clathrates for large cage occupancies at three temperature/pressure conditions stated above. At the low temperature, large cage occupancy of 5 is the most stable while at the higher temperature, the occupancy of 3 is the most favored. Calculations are also performed to show that the CO(2) sH clathrate is more stable than the methane clathrate analog. Implications on CO(2) sequestration by clathrate formation are discussed.  相似文献   

20.
Molecular dynamics simulations were used to determine the influence of a methane-water interface on the position and stability of methane hydrate cages. A potential of mean force was calculated as a function of the separation of a methane hydrate cage and a methane-water interface. The hydrate cages are found to be strongly repelled from the methane gas into the water phase. At low enough temperatures, however, the most favorable location for the hydrate cage is at the interface on the water side. Cage lifetime simulations were performed in bulk water and near a methane-water interface. The methane-water interface increases the cage lifetime by almost a factor of 2 compared to cage lifetimes of cages in bulk water. The potential of mean force and the cage lifetime results give additional explanations for the proposed nucleation of gas hydrates at gas-water interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号