首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New non-ionic microemulsions consisting of pentaethyleneglycol dodecyl ether, water, and 1-chloroalkanes were prepared, and their phase behavior was studied. A homologous series of five different 1-chloroalkanes from 1-chlorooctane to 1-chlorohexadecane was studied. The phase behavior of the microemulsions was determined by vertical sections through the Gibbs' phase prism ("fish" plots), from which valuable information such as the microemulsion balance temperature (T(0)), efficiency of the surfactant (phi*), temperature extension of the three-body phase (DeltaT), mean temperature (T(m)), and the monomeric solubility in oil (phi(mon,oil)) was obtained. The chlorinated alkanes in the microemulsions shift the balance temperature to about 14 degrees C lower compared with their n-alkane counterparts. This indicates the polar nature of the chlorinated oils and their ability to penetrate the surfactant film. The chlorinated alkanes thus behave as short n-alkane molecules and lower the spontaneous curvature of the microemulsion droplets. The efficiency of the surfactant and the monomeric solubility in oil systematically depend on the alkyl chain length of the oil, with the efficiency and solubility decreasing with increasing alkyl chain length of 1-chloroalkane. The size and shape of the microemulsion droplets in the microemulsion phase were studied by small-angle X-ray scattering (SAXS). For a surfactant-to-oil volume fraction ratio of 0.80, the droplets can be described by ellipsoidal shapes, and the size of the droplets increased with increasing alkyl chain length.  相似文献   

2.
Amphiphilic block copolymers of the type poly(ethylenepropylene)-co-poly(ethyleneoxide) dramatically enhance the solubilisation efficiency of non-ionic surfactants in microemulsions that contain equal volumes of water in oil. Consequently, the length scale of the microstructure of such bicontinuous microemulsions is dramatically increased up to the order of a few 100 nm. In this paper, we show that this so-called efficiency boosting effect can also be applied to water-in-oil microemulsions with droplet microstructure. Such giant water-in-oil microemulsions would provide confined compartments in which chemical reactions of biological macromolecules can be performed on a single molecule level. With this motivation we investigated the phase behavior and the microstructure of oil-rich microemulsions containing D(2)O, n-decane(d22), C(10)E(4) and the amphiphilic block copolymer PEP5-PEO5 [poly(ethylenepropylene)-co-poly(ethyleneoxide), weight per block of 5000 g/ mol]. We found that 15 wt % of water can be solubilised by 5 wt % of surfactant and block copolymer when about 6 wt % of surfactant is replaced by the block copolymer. Small-angle-neutron-scattering experiments were performed to determine the length scales and microstructure topologies of the oil-rich microemulsions. To analyze the scattering data, we derived a novel form factor that also takes into account the scattering contribution of the hydrophobic part of the block copolymer molecules that reside in the surfactant shell. The quantitative analysis of the scattering data with this form factor shows that the radius of the largest droplets amounts up to 30 nm. The novel form factor also yielded qualitative information on the stretching of the polymer chains in dependence on the polymer surface density and the droplet radius.  相似文献   

3.
The bending rigidity of surfactant membranes in novel bicontinuous CO(2)-microemulsions of the type H(2)O/NaCl-scCO(2)-Zonyl FSH/Zonyl FSN 100 was determined using both high pressure small angle neutron scattering and neutron-spin echo spectroscopy. As an important result it was found, that the stiffness of the membrane increases solely by an increase of the pressure.  相似文献   

4.
Diclofenac is a nonsteroidal anti-inflammatory drug that reduces inflammation and pain hormones in the body. Dispersing the drug in water is impossible and its solubility in oils is very limited. In this study, we solubilized sodium diclofenac in nanostructures of the constructed U-type water/sucrose laurate/ethoxylated mono-di-glyceride/oleic phase microemulsions. The mixing ratio (w/w) of sucrose laurate/ethoxylated mono-di-glyceride equals unity. The oleic phase was the pure R (+)-limonene or R (+)-limonene mixed with ethanol at a weight ratio equals unity. The solubilization capacity of the drug in these systems is many times higher than in either oil or water systems. The sodium diclofenac solubilized microemulsions are fully diluted with water without phase separation. The solubilization capacity decreases as the water content increases. The system free of alcohol solubilizes less amounts of drug over all the range of water contents compared to the system containing alcohol. Small angle x-ray scattering was used to evaluate the effect of solubilized sodium diclofenac on the microstructure and diffusion properties of the loaded microemulsions. From the periodicity and correlation length measured by small angle x-ray scattering, we learned that the drug affects the structure of loaded microemulsion droplets probably less spherical than the empty systems. The transition from water-in-oil to a bicontinuous phase occurs at the different water contents compared to the empty (i.e., without drug) microemulsions. The drug remains solubilized at the interface upon further dilution with water and is oriented with its hydrophilic part facing the water, and strongly affects the inversion to oil-in-water droplets.  相似文献   

5.
To investigate the kinetics of biochemical transformations in confined environments, compartments with a radius of the order of 10-50 nm are needed. Giant water-in-oil microemulsions provide such nanoscale reaction compartments and allow furthermore to control the degree of compartmentalization by an external tuning parameter such as temperature. With this motivation we investigated the phase behavior and the microstructure of oil-rich microemulsions. In this approach we focused on oil-rich microemulsions of the ternary system D(2)O-cyclohexane(d12)-C(12)E(6). Measurements of the phase behavior revealed that up to 20 wt % of water can be solubilized by less than 3 wt % of surfactant. Small-angle neutron scattering experiments were performed to determine the length scales and microstructure topologies of the oil-rich microemulsions. To analyze the scattering data, we derived the form factor for polydisperse spherical Gaussian shells with a scattering contribution of the droplet core. The quantitative analysis of the scattering data with this form factor shows that the radius of the largest droplets amounts up to 36 nm.  相似文献   

6.
The effect of surfactant tail structure on the stability of a water/supercritical CO2 microemulsion (W/scCO2 muE) was examined for various fluorinated double-tail anionic surfactants of different fluorocarbon chain lengths, F(CF2)n (n = 4, 6, 8, and 10), and oxyethylene spacer lengths, (CH2CH2O)(m/2) (m = 2 and 4). The phase behavior of the water/surfactant/CO2 systems was studied over a wide range of CO2 densities from 0.70 to 0.85 g/cm(3) (temperatures from 35 to 75 degrees C and pressures up to 500 bar) and corrected water-to-surfactant molar ratios (W0c). All of the surfactants yielded a W/scCO2 muE phase, that is, a transparent homogeneous phase with a water content larger than that permitted by the solubility of water in pure CO2. With increasing W0c, a phase transition occurred from the muE phase to a macroemulsion or a lamella-like liquid crystal phase. The maximum W0c value was obtained at a tail length of 12-14 A, indicating the presence of an optimum surfactant tail length for W/scCO2 muE formation.  相似文献   

7.
Significant efforts were undertaken to characterize the microstructure and structural properties of water-in-oil (w/o), oil-in-water (o/w), and bicontinuous (bc) microemulsions composed of N-alkyl-N-methylgluconamides (n-alkyl = n-C(12)H(25), n-C(14)H(29), n-C(16)H(33)) and n-alcohols (ethanol, n-propanol, n-butanol) or iso-alcohols (iso-propanol, iso-butanol) as cosurfactants, as well as iso-octane and water. The internal structure of so created four-component system was elucidated by means of an analysis of isotropic area magnitudes in phase diagrams and conductivity measurements. Dynamic light scattering (DLS) measurements provided the microemulsion size and polydispersity. Polarity and viscosity of microemulsion microenvironment were acquired by means of electron paramagnetic resonance (EPR), UV-vis absorption spectroscopy (in the case of w/o droplets), and steady-state fluorescence (SSF) (in the case of o/w droplets). The results show that both the surfactant and the cosurfactant types affect the shape and extent of microemulsions. The size of droplets depends strongly on the type of examined microemulsion and the type of cosurfactant (linear or brunched) but is almost independent of the length of the surfactant alkyl chain. The size of microemulsion droplets ranges from 8.1 to 22.6 nm and from 3.7 to 14.3 nm respectively, for o/w and o/w microemulsions, making them good candidates for both template-based reactions and household components solubilizing media.  相似文献   

8.
The effects of surfactant mixing on interfacial tension and on microemulsion formation were examined for systems of air/water and water/supercritical CO2 (scCO2) interfaces and for water/scCO2 microemulsions. A fluorinated surfactant, sodium bis(1H,1H,2H,2H-heptadecafluorodecyl)-2-sulfosuccinate (8FS(EO)2), was mixed with the three hydrocarbon surfactants, Pluronic L31, Tergitol TMN-6, and decyltrimethylammonium chloride (DeTAC), at equimolar ratio. For all the cases, the interfacial tension was significantly lowered by the mixing. The positive synergistic effect suggests that the mixed surfactants tend to pack more closely on the interface than the pure constituents. It was found, however, that the microemulsion formation in scCO2 was never facilitated by the mixing, except for the case of TMN-6. This is probably due to the segregation of the surfactants into hydrocarbon-rich and fluorocarbon-rich phases on the microemulsion surface.  相似文献   

9.
10.
Phase behavior was investigated for water/supercritical CO 2 (W/scCO2) microemulsions stabilized with sodium bis(1H,1H,2H,2H-heptadecafluorodecyl)-2-sulfosuccinate (8FS(EO) 2) mixed with various guest surfactants. Only for the mixtures with fluorocarbon-hydrocarbon hybrid anionic surfactants (FC6-HC n), the maximum water-to-surfactant molar ratio (W0(c)) was larger than that estimated from linear interpolation of the W0(c) values for pure 8FS(EO) 2 and pure guest surfactant. Fourier transform infrared (FT-IR) measurement for the microemulsion revealed that the mixing of 8FS(EO) 2 with FC6-HC n can prevent a phase transition from the microemulsion to the liquid crystal even in the presence of excess water. It was also found from the measurement of water/scCO 2 interfacial tension that the area occupied per surfactant molecule was markedly increased by the mixing with FC6-HC n. The loose molecular packing, probably due to a microsegregation of 8FS(EO) 2 and FC6-HC n, is consistent with the enhanced stability of the microemulsion upon surfactant mixing.  相似文献   

11.
The ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) forms nonaqueous microemulsions with p-xylene, with the aid of the nonionic surfactant TX-100. The phase behavior of the ternary system is investigated, and three microregions of the microemulsions-ionic liquid-in-oil (IL/O), bicontinuous, and oil-in-ionic liquid (O/IL)-are identified by conductivity measurements, according to percolation theory. On the basis of a phase diagram, a series of IL/O microemulsions are chosen and characterized by dynamic light scattering (DLS). The size of aggregates increases on increasing the amount of added polar component (bmimBF(4)), which is a similar phenomenon to that observed for typical water-in-oil (W/O) microemulsions, suggesting the formation of IL/O microemulsions. The microstructural characteristics of the microemulsions are investigated by FTIR and 1H NMR spectroscopy. The results indicate that the interaction between the electronegative oxygen atoms of the oxyethylene (OE) units in TX-100 and the electropositive imidazolium ring may be the driving force for the solubilization of bmimBF4 into the core of the TX-100 aggregates. In addition, the micropolarity of the microemulsions is investigated by using methyl orange (MO) as a UV/Vis spectroscopic probe. A relatively constant polarity of the microemulsion droplets is obtained in the IL microemulsion. Finally, a plausible structure for the IL/O microemulsion is presented.  相似文献   

12.
Fluorescence correlation spectroscopy (FCS) has been successfully used to characterise water-in-oil (w/o) microemulsions. The investigated systems were stabilised by sodium bis-2-ethylhexyl sulphosuccinate (AOT) and the measured diffusion times have been related to the radii of the aggregated species, which for some systems, were separately determined by small-angle neutron scattering (SANS). We demonstrate that FCS is capable of measuring hydrodynamic radii of microemulsions rapidly and at surfactant concentrations lower than previously reported for other techniques. FCS was also used to specifically interrogate microemulsion droplets containing a fluorescently-labelled biomolecule, specifically phalloidin, a peptide fungal toxin from Amanita phalloides, and the enzyme -chymotrypsin (-CT). The microemulsion droplets are only marginally increased in size if a small peptide (phalloidin) is included in the water phase, whereas the droplet size is significantly increased when a larger protein (-CT) is included.  相似文献   

13.
The phase behavior of toluene/Triton X-100 (TX-100)/1-butyl-3-methylimidazolium hexafluorophosphate([bmim][PF6]) was studied. It was demonstrated that the single-phase microemulsion area covered about 75% of the phase diagram at 25 °C. Electrical conductivities of the system with different w ([bmim][PF6]-to-TX-100 molar ratio) values were determined, and the results were used to locate the sub-regions of the single-phase microemulsion. The results showed that a transform from [bmim][PF6]-in-oil ([bmim][PF6]/O) microstructure via a bicontinuous region to an oil-in-[bmim][PF6] (O/[bmim][PF6]) microstructure occurred with the increase of Φ (weight fraction of TX-100 and [bmim][PF6] in the system). The aggregate size of the reverse microemulsions of [bmim][PF6]/O was determined using small-angle X-ray scattering. The results showed that the size of the reverse microemulsions depended markedly on the w values.  相似文献   

14.
Microemulsions of nonionic alkyl oligoethyleneoxide (CiEj) surfactants, alkanes, and ethylammonium nitrate (EAN), a room-temperature ionic liquid, have been prepared and characterized. Studies of phase behavior reveal that EAN microemulsions have many features in common with corresponding aqueous systems, the primary difference being that higher surfactant concentrations and longer surfactant tailgroups are required to offset the decreased solvophobicity the surfactant molecules in EAN compared with water. The response of the EAN microemulsions to variation in the length of the alkane, surfactant headgroup, and surfactant tailgroup has been found to parallel that observed in aqueous systems in most instances. EAN microemulsions exhibit a single broad small-angle X-ray scattering peak, like aqueous systems. These are well described by the Teubner-Strey model. A lamellar phase was also observed for surfactants with longer tails at lower temperatures. The scattering peaks of both microemulsion and lamellar phases move to lower wave vector on increasing temperature. This is ascribed to a decrease in the interfacial area of the surfactant layer. Phase behavior, small-angle X-ray scattering, and conductivity experiments have allowed the weakly to strongly structured transition to be identified for EAN systems.  相似文献   

15.
Ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4), were substituted for polar water and formed nonaqueous microemulsions with toluene by the aid of nonionic surfactant TX-100. The phase behavior of the ternary system was investigated, and microregions of bmimBF4-in-toluene (IL/O), bicontinuous, and toluene-in-bmimBF4 (O/IL) were identified by traditional electrical conductivity measurements. Dynamic light scattering (DLS) revealed the formation of the IL microemulsions. The micropolarities of the IL/O microemulsions were investigated by the UV-vis spectroscopy using the methyl orange (MO) and methylene blue (MB) as absorption probes. The results indicated that the polarity of the IL/O microemulsion increased only before the IL pools were formed, whereas a relatively fixed polar microenvironment was obtained in the IL pools of the microemulsions. Moreover, UV-vis spectroscopy has also shown that ionic salt compounds such as Ni(NO3)2, CoCl2, CuCl2, and biochemical reagent riboflavin could be solubilized into the IL/O microemulsion droplets, indicating that the IL/O microemulsions have potential application in the production of metallic or semiconductor nanomaterials, and in biological extractions or as solvents for enzymatic reactions. The IL/O microemulsions may have some expected effects due to the unique features of ILs and microemulsions.  相似文献   

16.
The novel fish oil O/W microemulsion system is formed with food-acceptable components, Tween 80, ethyl oleate, fish oil and water. We studied the influence of fish oil proportion in the oil phase on the microemulsion regions. We investigated this system using the dynamic light scattering and transmission electron microscopy; the rheological characteristics and release effect were also explored. The obtained results indicated that the particle sizes of spherical droplets in microemulsions depend significantly on the total oil phase content, varying from 5 to 198 nm. The rheological measurements showed that all studied microemulsions followed shear thinning behavior. Well-controlled release profile of the fish oil microemulsions was found in different dialyzate solutions.  相似文献   

17.
A novel class of p-xylene-in-water microemulsions mainly based on nonionic surfactants and their application as low impact cleaning tool in cultural heritage conservation is presented. Alkyl polyglycosides (APG) and Triton X-100 surfactants allow obtaining very effective low impact oil-in-water (o/w) microemulsions as alternatives to pure organic solvents for the removal of polymers (particularly Paraloid B72 and Primal AC33) applied during previous conservation treatments. The ternary APG/p-xylene/water microemulsions have been characterized by quasi elastic light scattering to obtain the hydrodynamic radius and the polydispersity of the microemulsion droplets. Laplace inversion of the correlation function CONTIN analysis provided evidence of acrylic copolymers solubilization into the oil nanodroplets. Contact angle, Fourier transform infrared (FTIR), and scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) data confirmed that microemulsions were effective in removing polymer coatings. The phase diagram of APG microemulsions showed that a reduction >90% (compared to the conventional cleaning methods) of the organic solvent can be achieved by using o/w microemulsions. The microemulsions were successfully tested in two real cases: (1) the APG based microemulsion was used in a Renaissance painting by Vecchietta in Santa Maria della Scala, Siena, Italy, degraded by the presence of a polyacrylate coating applied during a previous restoration and (2) a Triton X-100 oil-in-water microemulsion containing (NH4)2CO3 in the water continuous phase. The association of ammoniun carbonate to the microemusion led to the swelling of an organic deposit (mainly asphaltenes deposited on the fresco in the Oratorio di San Nicola al Ceppo in Florence, still contamined by the water of the Arno river during the 1966 flood) and a very efficient removal of highly insoluble inorganic deposits (mainly gypsum) strongly associated to asphaltenes. These innovative systems are very attractive for the low amount of organic solvent used to extract the polymers or highly insoluble substances as the asphaltene and the very efficient and mild impact of the cleaning procedure on the fragile painted surfaces.  相似文献   

18.
Small-angle and ultrasmall-angle neutron scattering (SANS/USANS) measurements were used to determine the structural changes induced by photopolymerization of AOT/D2O/(dodecyl acrylate) inverse microemulsion systems. Scattering profiles were collected for the initial microemulsions and the films resulting from photopolymerization of the oil phase. The SANS data for the microemulsions were modeled as spherical, core-shell droplets. Upon polymerization, the clear mircoemulsions formed opaque films. From the SANS/USANS data of the films, it was apparent that this morphology was not preserved upon polymerization; however, it was clearly observed that the formulation of the microemulsion had a large impact on the structure within the films. The Guinier region in the USANS data (2.5 x 10(-5) A(-1) < or = Q < or = 5.3 x 10(-3) A(-1)) from the films indicates that very large structures are formed. Simultaneously, a well-defined peak (0.15 A(-1) < or = Q < or = 0.25 A(-1)) in the SANS data indicates that there are also much smaller structures formed. It is proposed that the low-Q scattering arises from aggregation of the nanometer-size water droplets in the microemulsion to form droplets large enough to scatter visible light, while the peak in the high-Q region results from bilayered structures formed by the surfactant.  相似文献   

19.
Polymer–droplet interactions have been studied in AOT/water/isooctane oil-continuous microemulsions mixed with an amphiphilic graft copolymer, or with the parent homopolymer (AOT = sodium bis(2-ethylhexyl) sulfosuccinate). The graft copolymer has an oil-soluble poly(dodecyl methacrylate) backbone and water-soluble poly(ethylene glycol) side chains. Pseudo-ternary polymer/droplet/isooctane phase diagrams have been established for both the parent homopolymer and the graft copolymer, and the two types of mixture display entirely different phase behavior. The homopolymer–droplet interaction is repulsive, and a segregative phase separation occurs at high droplet concentrations. By contrast, the graft copolymer–droplet interaction is attractive: the polymer is insoluble in the pure oil, but dissolves in the microemulsion. A comparatively high concentration of droplets is required to solubilize even small amounts of polymer. Static and dynamic light scattering has been performed in order to obtain information on structure and dynamics in the two types of mixture. For optically matched microemulsions, with a vanishing excess polarizability of the droplets, the polymer dominates the intensity of scattered light. The absolute intensity of scattered light increases as phase separation is approached owing to large-scale concentration fluctuations. Dynamic light scattering shows two populations of diffusion coefficients; one population originates from “free” microemulsion droplets and the other from the polymer (for homopolymer mixtures) or from polymer–droplet aggregates (for mixtures with the graft copolymer). The graft copolymer forms large polymer–droplet aggregates with a broad size distribution, which coexist with a significant fraction of free droplets.  相似文献   

20.
The formation of CO2-expanded, fluorinated reverse microemulsions is demonstrated for the system of perfluoropolyether (PFPE) surfactant (ClPFPE-NH4, MW = 632) and PFPE oil (PFPE, MW = 580). The phase behavior of this system is examined as a function of temperature (25-45 degrees C), pressure, CO2 concentration, and water to surfactant molar ratios (W0 = 10 and 20). Visual observations of one-phase behavior consistent with reverse microemulsion formation are further supported by spectroscopic measurements that establish the existence of a bulk water environment within the aqueous core. Microemulsion formation is not observed in the absence of CO2 for this PFPE surfactant/PFPE oil system, and a CO2 content greater than 70 mol % is required to induce microemulsion formation. Over the range of water loadings and temperatures investigated, the lowest cloud point pressure is observed at 46 bar (5 wt % ClPFPE-NH4 in PFPE oil, W0 = 20, xCO2 = 0.7, T = 25 degrees C). In the regions where one-phase behavior is observed, the cloud point pressures increase with temperature, water loadings, and CO2 content. The driving forces of microemulsion formation in the CO2-expanded fluorinated solvent are discussed relative to traditional reverse microemulsions and CO2-continuous microemulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号