首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cho S  Lee SH  Chung WJ  Kim YK  Lee YS  Kim BG 《Electrophoresis》2004,25(21-22):3730-3739
A microbead-based affinity chromatography chip (micro-BACC) controlling hundreds of nanoliters of reaction volume was developed to separate and analyze hepatitis C virus (HCV) RNA polymerase protein by immobilization of an RNA aptamer on beads. A photocleavable linker was conjugated in between the beads and the aptamer to elute the bound RNA polymerase from the RNA aptamer in one step by UV irradiation, resulting in an efficient method to elute and identify the target molecule bound on RNA using a mass spectrometer. This linker showed a cleavage activity over 70% upon UV irradiation at 1050 mW/cm2 for more than 5 min. The photoelution method could prevent the target molecule from contaminations in affinity chromatography caused by elution solutions of high salt concentration, extreme pH and detergent, respectively. In this chip, sample reagents up to 800 nL could be metered quantitatively into the bead chamber using a nanoliter dispenser working, based on surface-guided flow control and pneumatic control by external air pressure on the chip. RNA polymerase eluted after UV irradiation was successfully analyzed by trypsin treatment without additional purification. As a result, using the aptamer, we could detect RNA polymerase from 800 nL hepatitis C patient serum containing 96 fmol HCV RNA polymerase. The detection limit of this system was estimated to be 9.6 fmol HCV RNA polymerase.  相似文献   

2.
Von Willebrand factor (VWF) binding and platelet adhesion to subendothelial collagens are initial events in thrombus formation at sites of vascular injury. These events are often studied in vitro using flow assays designed to mimic vascular hemodynamics. Flow assays commonly employ collagen-functionalized substrates, but a lack of standardized methods of surface ligation limits their widespread use as a clinical diagnostic. Here, we report the use of collagen thin films (CTF) in flow assays. Thin films were grown on hydrophobic substrates from type I collagen solutions of increasing concentration (10, 100, and 1000 μg/mL). We found that the corresponding increase in fiber surface area determined the amount of VWF binding and platelet adhesion. The association rate constant (k(a)) of plasma VWF binding at a wall shear stress of 45 dyn/cm(2) was 0.3 × 10(5), 1.8 × 10(5), and 1.6 × 10(5) M(-1) s(-1) for CTF grown from 10, 100, and 1000 μg/mL solutions, respectively. We observed a 5-fold increase in VWF binding capacity with each 10-fold increase in collagen solution concentration. The association rates of Ser1731Thr and His1786Asp VWF mutants with collagen binding deficiencies were 9% and 22%, respectively, of wild-type rates. Using microfluidic devices for blood flow assays, we observed that CTF supported platelet adhesion at a wall shear rate of 1000 s(-1). CTF grown from 10 and 100 μg/mL solutions had variable levels of platelet surface coverage between multiple normal donors. However, CTF substrates grown from 1000 μg/mL solutions had reproducible surface coverage levels (74 ± 17%) between normal donors, and there was significantly diminished surface coverage from two type 1 von Willebrand disease patients (8.0% and 24%). These results demonstrate that collagen thin films are homogeneous and reproducible substrates that can measure dysfunctions in VWF binding and platelet adhesion under flow in a clinical microfluidic assay format.  相似文献   

3.
A novel method for the determination of nucleic acids by using silver nanoparticle (AgNPs)-eriochrome black T (EBT) as a resonance light scattering (RLS) probe has been developed. Under optimum conditions, there are linear relationships between the quenching extent of RLS intensity and the concentration of nucleic acids in the range of 4.0×10(-9)-4.0×10(-7), 4.0×10(-7)-1.6×10(-6) g mL(-1) for fish sperm DNA (fsDNA) and 4.0×10(-8)-2.0×10(-6) g mL(-1) for yeast RNA (yRNA). Their detection limits (S/N=3) are 2.0 ng mL(-1) and 21 ng mL(-1), respectively. The results indicate that AgNPs can form wirelike aggregates and nanoslices in the presence of the EBT. Whereas, when nucleic acids are added into the AgNPs-EBT system, the dynamic balance of AgNPs-EBT system is destroyed and the nanoparticles undergo dispersion again, leading to the RLS intensity of AgNPs-EBT system quenching. Meanwhile, the conformation of fsDNA is changed by the synergistic effect of AgNPs and EBT.  相似文献   

4.
5.
6.
The present study shows a new nano-liquid chromatographic method for beta-blocker enantiomers' separation. This method consists of using a capillary column packed with silica particles which were chemically modified with vancomycin. On-column focusing allowed to inject relatively high sample volumes (1500 nL) increasing method sensitivity. The studied racemic compounds, namely atenolol, propranolol, oxprenolol, and metoprolol were dissolved in methanol and injected for chromatographic separation. The effect of injected sample volume was studied in the range of 50-2100 nL. Peak height of the two alprenolol enantiomers increased linearly up to 1500 nL. This volume was injected for validation and sample analysis. Under optimal experimental conditions, LODs and LOQs (LOD and LOQ for each alprenolol enantiomers) were 9.0 and 15.6 ng/mL, respectively. Calibration curves were linear in the studied range (9-250 ng/mL). The optimized method was applied to the analysis of a human plasma sample spiked with racemic alprenolol.  相似文献   

7.
This paper describes the preconcentration of the biomarker cardiac troponin I (cTnI) and a fluorescent protein (R-phycoerythrin) using cationic isotachophoresis (ITP) in a 3.9 cm long poly(methyl methacrylate) (PMMA) microfluidic chip. The microfluidic chip includes a channel with a 5× reduction in depth and a 10× reduction in width. Thus, the overall cross-sectional area decreases by 50× from inlet (anode) to outlet (cathode). The concentration is inversely proportional to the cross-sectional area so that as proteins migrate through the reductions, the concentrations increase proportionally. In addition, the proteins gain additional concentration by ITP. We observe that by performing ITP in a cross-sectional area reducing microfluidic chip we can attain concentration factors greater than 10,000. The starting concentration of cTnI was 2.3 μg mL?1 and the final concentration after ITP concentration in the microfluidic chip was 25.52 ± 1.25 mg mL?1. To the author's knowledge this is the first attempt at concentrating the cardiac biomarker cTnI by ITP. This experimental approach could be coupled to an immunoassay based technique and has the potential to lower limits of detection, increase sensitivity, and quantify different isolated cTnI phosphorylation states.  相似文献   

8.
IntroductionIt is often necessary to determine some components in small volumes in vitro and in vivoin biology rapidly and accurately.Asthe ultramicroelectrode and the microelectrochemical cellcan be made in such a small dimension and with a high sensitivity,the electroanalytical meth-ods display powerful potentialitiesin this respect.In recentyears,the reports aboutthe deter-mination of samples in small volumes in vitro have aroused a more and more interest[1— 1 0 ] andthe greatprogresshas b…  相似文献   

9.
Digital microfluidics (DMF), a fluid-handling technique in which picolitre-microlitre droplets are manipulated electrostatically on an array of electrodes, has recently become popular for applications in chemistry and biology. DMF devices are reconfigurable, have no moving parts, and are compatible with conventional high-throughput screening infrastructure (e.g., multiwell plate readers). For these and other reasons, digital microfluidics has been touted as being a potentially useful new tool for applications in multiplexed screening. Here, we introduce the first digital microfluidic platform used to implement parallel-scale cell-based assays. A fluorogenic apoptosis assay for caspase-3 activity was chosen as a model system because of the popularity of apoptosis as a target for anti-cancer drug discovery research. Dose-response profiles of caspase-3 activity as a function of staurosporine concentration were generated using both the digital microfluidic method and conventional techniques (i.e., pipetting, aspiration, and 96-well plates.) As expected, the digital microfluidic method had a 33-fold reduction in reagent consumption relative to the conventional technique. Although both types of methods used the same detector (a benchtop multiwell plate reader), the data generated by the digital microfluidic method had lower detection limits and greater dynamic range because apoptotic cells were much less likely to de-laminate when exposed to droplet manipulation by DMF relative to pipetting/aspiration in multiwell plates. We propose that the techniques described here represent an important milestone in the development of digital microfluidics as a useful tool for parallel cell-based screening and other applications.  相似文献   

10.
11.
This Article describes the use of capillary pressure to initiate and control the rate of spontaneous liquid-liquid flow through microfluidic channels. In contrast to flow driven by external pressure, flow driven by capillary pressure is dominated by interfacial phenomena and is exquisitely sensitive to the chemical composition and geometry of the fluids and channels. A stepwise change in capillary force was initiated on a hydrophobic SlipChip by slipping a shallow channel containing an aqueous droplet into contact with a slightly deeper channel filled with immiscible oil. This action induced spontaneous flow of the droplet into the deeper channel. A model predicting the rate of spontaneous flow was developed on the basis of the balance of net capillary force with viscous flow resistance, using as inputs the liquid-liquid surface tension, the advancing and receding contact angles at the three-phase aqueous-oil-surface contact line, and the geometry of the devices. The impact of contact angle hysteresis, the presence or absence of a lubricating oil layer, and adsorption of surface-active compounds at liquid-liquid or liquid-solid interfaces were quantified. Two regimes of flow spanning a 10(4)-fold range of flow rates were obtained and modeled quantitatively, with faster (mm/s) flow obtained when oil could escape through connected channels as it was displaced by flowing aqueous solution, and slower (micrometer/s) flow obtained when oil escape was mostly restricted to a micrometer-scale gap between the plates of the SlipChip ("dead-end flow"). Rupture of the lubricating oil layer (reminiscent of a Cassie-Wenzel transition) was proposed as a cause of discrepancy between the model and the experiment. Both dilute salt solutions and complex biological solutions such as human blood plasma could be flowed using this approach. We anticipate that flow driven by capillary pressure will be useful for the design and operation of flow in microfluidic applications that do not require external power, valves, or pumps, including on SlipChip and other droplet- or plug-based microfluidic devices. In addition, this approach may be used as a sensitive method of evaluating interfacial tension, contact angles, and wetting phenomena on chip.  相似文献   

12.
We report a low cost, disposable polymer microfluidic sample preparation device to perform rapid concentration of bacteria from liquid samples using enhanced evaporation targeted at downstream detection using surface enhanced Raman spectroscopy (SERS). The device is composed of a poly(dimethylsiloxane) (PDMS) liquid sample flow layer, a reusable metal airflow layer, and a porous PTFE (Teflon?) membrane sandwiched in between the liquid and air layers. The concentration capacity of the device was successfully demonstrated with fluorescently tagged Escherichia coli (E. coli). The recovery concentration was above 85% for all initial concentrations lower than 1 × 10(4) CFU mL(-1). In the lowest initial concentration cases, 100 μL initial volumes of bacteria solution at 100 CFU mL(-1) were concentrated into 500 nL droplets with greater than 90% efficiency in 15 min. Subsequent tests with SERS on clinically relevant Methicillin-Sensitive Staphylococcus aureus (MSSA) after concentration in this device proved more than 100-fold enhancement in SERS signal intensity compared to the signal obtained from the unconcentrated sample. The concentration device is straightforward to design and use, and as such could be used in conjunction with a number of detection technologies.  相似文献   

13.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase, NS5B protein, is the key viral enzyme responsible for replication of the HCV viral RNA genome. Although several full-length and truncated forms of the HCV NS5B proteins have been expressed previously in insect cells, contamination of host terminal transferase (TNTase) has hampered analysis of the RNA synthesis initiation mechanism using natural HCV RNA templates. We have expressed the HCV NS5B protein in insect cells using a recombinant baculovirus and purified it to near homogeneity without contaminated TNTase. The highly purified recombinant HCV NS5B was capable of copying 9.6-kb full-length HCV RNA template, and mini-HCV RNA carrying both 5'- and 3'-untranslated regions (UTRs) of the HCV genome. In the absence of a primer, and other cellular and viral factors, the NS5B could elongate over HCV RNA templates, but the synthesized products were primarily in the double stranded form, indicating that no cyclic replication occurred with NS5B alone. RNA synthesis using RNA templates representing the 3'-end region of HCV minus-strand RNA and the X-RNA at the 3'-end of HCV RNA genome was also initiated de novo. No formation of dimer-size self-primed RNA products resulting from extension of the 3'-end hydroxyl group was observed. Despite the internal de novo initiation from the X-RNA, the NS5B could not initiate RNA synthesis from the internal region of oligouridylic acid (U)(20), suggesting that HCV RNA polymerase initiates RNA synthesis from the selected region in the 3'-UTR of HCV genome.  相似文献   

14.
M Zhou  Y Li  C Liu  Y Ma  J Mi  S Wang 《Electrophoresis》2012,33(16):2577-2583
A CE electrochemiluminescence (CE-ECL) method for simultaneous determination of lappaconitine hydrobromide (LH) and isopropiram fumarate (IF) has been first established, with a chemically modified platinum electrode by europium (III)-doped Prussian blue analogue film as a working electrode. The conditions for CE separation and ECL detection are discussed and optimized in detail. It has been proved that 20 mmol/L phosphate buffer (pH 8.5) containing 5% (v/v) ACN and 0.17 mol/L SDS could achieve the most favorable resolution, and the high sensitivity of detection was obtained by maintaining the detection potential at 1.23 V. Under optimized conditions, a baseline separation for the two analytes was achieved within 6 min, and the standard curves were linear in the range of 1.0×10(-7) ~ 5.0 × 10(-5) g/mL for LH and 4.0 × 10(-8) ~ 1.0 × 10(-5) g/mL for IF with the detection limits (3σ) of 6.6 × 10(-8) g/mL for LH and 3.7 × 10(-8) g/mL for IF, respectively. The precisions of intra- and interday measurements for LH and IF were less than 4.21 and 2.61%, respectively. The applicability of the proposed method was illustrated in the determination of LH and IF in rabbit plasma with recoveries between 95.6 and 103.0%.  相似文献   

15.
The human population is still facing appalling conditions due to several outbreaks of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. The absence of specific drugs, appropriate vaccines for mutants, and knowledge of potential therapeutic agents makes this situation more difficult. Several 1, 2, 4-triazolo [1, 5-a] pyrimidine (TP)-derivative compounds were comprehensively studied for antiviral activities against RNA polymerase of HIV, HCV, and influenza viruses, and showed immense pharmacological interest. Therefore, TP-derivative compounds can be repurposed against the RNA-dependent RNA polymerase (RdRp) protein of SARS-CoV-2. In this study, a meta-analysis was performed to ensure the genomic variability and stability of the SARS-CoV-2 RdRp protein. The molecular docking of natural and synthetic TP compounds to RdRp and molecular dynamic (MD) simulations were performed to analyse the dynamic behaviour of TP compounds at the active site of the RdRp protein. TP compounds were also docked against other non-structural proteins (NSP1, NSP2, NSP3, NSP5, NSP8, NSP13, and NSP15) of SARS-CoV-2. Furthermore, the inhibition potential of TP compounds was compared with Remdesivir and Favipiravir drugs as a positive control. Additionally, TP compounds were analysed for inhibitory activity against SARS-CoV RdRp protein. This study demonstrates that TP analogues (monomethylated triazolopyrimidine and essramycin) represent potential lead molecules for designing an effective inhibitor to control viral replication. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as suitable drug candidates against SARS-CoV-2.  相似文献   

16.
在水相中合成了硫普罗宁(Tiopronin,TP)修饰的CdTe/CdS量子点(TP-CdTe/CdS QDs).利用紫外-可见吸收光谱、荧光光谱研究了TP-CdTe/CdS QDs与丝裂霉素(mitomycin C,MMC)的相互作用机理.在pH=7.6的tris-HCl缓冲溶液介质中,TP-CdTe/CdS QDs与MMC相互作用,使TP-CdTe/CdS QDs的荧光发生猝灭,并且QDs的荧光强度与MMC的浓度有良好的线性关系(r=0.9991),线性范围4.7×10-9~1.2×10-8g/mL,检出限(3σ)为1.4×10-g/mL.此方法快速简便,用于尿样中丝裂霉素的测定,实验结果令人满意.  相似文献   

17.
Binding of three different bacteriophages (phages), namely T7, lambda and M13 on methacrylate monoliths was investigated. Phage M13 exhibited the highest dynamic binding capacity of 4.5×10(13) pfu/mL while T7 and lambda showed capacity of 1×10(13) pfu/mL, all corresponding to values of around 1mg/mL. Interestingly, capacity for lambda phage was increased 5-fold by increasing NaCl concentration in a loaded sample from 0 to 0.2M while there was a constant capacity decrease for T7 and M13 phages. Under optimal conditions, recovery for all three phages approached 100%. Measurement of a pressure drop increase during loading enabled estimation of adsorbed phage layer thickness. At a maximal capacity it was calculated to be around 50 nm for T7 phage and 60 nm for lambda phage matching closely capside size thus indicating monolayer adsorption while 80 nm layer thickness was estimated for M13 phage showing its orientation along the pore.  相似文献   

18.
Key factors influencing the analyte detection limit of the sandwich immunochromatographic assay (ICA), namely, the size of gold nanoparticles, the antibody concentration, the conjugation pH, and characteristics of membranes, are discussed. The impacts of these factors were quantitatively characterized and compared for the first time using the same antigen (potato virus X). The antibody-colloidal gold conjugates synthesized at pH 9.0-9.5 (the pH was examined in the range from 7.5 to 10.0) and at an antibody concentration of 15 μg/mL (the concentration was tested from 10 to 100 μg/mL) demonstrated maximum binding with the analyte. The relationship between the size of gold nanoparticles and the ICA detection limit was determined. The detection limit decreases from 80 to 3 ng/mL (for antibodies with K (D) = 1.0 × 10(-9) M, data were obtained using a BIAcore X instrument) for a series of particles with a diameter from 6.4 to 33.4 nm (electron microscopy and dynamic light scattering data). In the case of larger particles (52 nm in diameter), the detection limit increases and reaches 9 ng/mL. A 10 mM phosphate buffer, pH 8, and a 50 mM phosphate buffer, pH 7, were the conditions of choice for the deposition of reactants. Taking into account these facts, we developed a lateral-flow test system for the rapid (10 min) detection of potato virus X in plant leaves. The ICA provided a visual detection limit of 3 ng/mL. In the case of the instrumental processing, potato virus X can be determined in the concentration range from 3 to 300 ng/mL with a detection limit 2 ng/mL.  相似文献   

19.
在pH值为4.2~4.4的HAc-NaAc介质中,盐酸吗啉胍(ABOB)与Pd(Ⅱ)反应形成螯合阳离子[Pd(ABOB)2]2+,它能进一步与曙红Y(EY)、赤藓红(Ery)和二溴荧光素(DBF)阴离子形成离子缔合物,此时将引起共振瑞利散射(RRS)的急剧增强并产生新的RRS光谱。 盐酸吗啉胍与Pd(Ⅱ)和3种染料反应后的产物具有相似的光谱特征,最大RRS波长位于315 nm附近。 在一定条件下散射增强(ΔI)与ABOB浓度成正比,EY、Ery和DBF这3个体系的线性范围分别为0.012×10-6~1.2×10-6 g/mL、0.23×10-6~2.3×10-6 g/mL和0.24×10-6~1.5×10-6 g/mL。 方法具有较高的灵敏度,对于ABOB的检出限依次为0.003 6×10-6、0.070×10-6和0.025×10-6 g/mL,其中以EY体系灵敏度最高,其次是DBF和Ery。 研究了适宜的反应条件和影响因素,表明本方法具有良好的选择性,并以EY体系为例考察了共存物质的影响。 据此建立以曙红Y作探针,用RRS技术快速、简便,高灵敏测定ABOB的新方法。 文中还对离子缔合物的形成和反应机理进行了讨论。  相似文献   

20.
For the first time the four block copolymers derived from 1-alkyl[2-(acryloyloxy)ethyl]dimethylammonium bromides with hexyl (ADA) or cetyl (ADHA) groups and 2-hydroxyethylacrylate (HEA) or N-isopropylacrylamide (NIPAM) were synthesized and employed for functionalization of monodisperse iron oxide nanoparticles (NPs). The polyADA (pADA) or polyADHA (pADHA) block consists of long hydrophobic tails (C(6) or C(16)) connected to a positively charged quaternary ammonium group, making this block amphiphilic. The second block was either fully hydrophilic (pHEA) or thermoresponsive (pNIPAM). The dependence of the NP coating on the length of the hydrophobic tail in the amphiphilic block, the composition of the hydrophilic block, and the NP sizes have been studied. Unusual self-assembling of iron oxide NPs into well-defined composite submicrometer particles was observed for pADHA-b-pNIPAM in the wide range of concentrations (at the pADHA repeating unit concentrations of 0.065 × 10(-2)-2.91 × 10(-2) mmol/mL per 1 mg/mL NPs) but only two concentrations, 1.62 × 10(-2) and 1.94 × 10(-2) mmol/mL, led to regular spherical particles. The thermoresponsive behavior of these composite particles was tested using ζ-potential and dynamic light scattering measurements, while the morphology of particles was characterized by transmission electron microscopy. Coating of NPs with pADHA-b-pHEA results in the formation of individually coated NPs. The different composite particle morphologies are explained by different properties of pHEA and pNIPAM. It is demonstrated that the composite particles based on pADHA-b-pNIPAM are responsive to a magnetic field and can be recommended as magnetic stoppers in biorelated membrane separations. The incorporation of Pd species in submicrometer particles makes them promising candidates for catalytic applications as magnetically recoverable catalysts with a high magnetic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号