首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Transition-metal based M-N_4/C catalysts are appealing for electrocatalytic oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). Employing model catalysts, which have well-defined molecular structures and coordination environments, to investigate electrocatalytic performance of M-N_4/C sites for ORR and OER is of fundamental significance. Herein, we reported the use of Co tetra(phenyl)porphyrin 1 and Co tetra(pentafluorophenyl)porphyrin 2 as models to probe the role of Co-N_4/C sites for oxygen electrocatalysis. We showed that Co porphyrin 1 is more efficient than its structural analogue 2 for oxygen electrocatalysis in alkaline aqueous solutions, indicating that the electronrich Co-N_4/C site is more favored when noncovalently adsorbed on carbon supports. This work inspires rational design of reaction-oriented catalysts for sustainable energy storage and conversion technologies.  相似文献   

2.
周省  覃佳艺  赵雪茹  杨静 《催化学报》2021,42(4):571-582,中插13-中插19
随着能源危机的日益严峻,能源的储存和转换越来越受到人们的重视.目前人们加以开发和利用的清洁能源主要包括太阳能、风能、氢能、地热能以及电化学能等.其中,燃料电池和金属-空气电池等作为电化学器件为电化学能的开发及可持续利用提供了条件.特别是金属-空气电池以电极电位较负的金属如镁、铝、锌、铁等作负极,以空气中的氧或纯氧作正极...  相似文献   

3.
Benefiting from unique excellent physical and chemical characteristics, graphene has attracted widespread attention in the application of electrocatalysis. As a promising candidate, graphene is usually regulated with surface defects, heteroatoms, metal atoms and other active materials through covalent or non‐covalent bonds to substitute for noble metal catalysts, which has not been targeted in a report yet. In this review, we summarize the recent advances of approaches for engineering graphene‐based electrocatalysts and emphasize the corresponding electrocatalytic active sites in various electrocatalysis circumstances, such as electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), etc. The opportunities and challenges in the future development of graphene‐based catalysts are also discussed.  相似文献   

4.
《Journal of Energy Chemistry》2017,26(6):1077-1093
Nanocarbons are of progressively increasing importance in energy electrocatalysis, including oxygen reduction, oxygen evolution, hydrogen evolution, CO_2 reduction, etc. Precious-metal-free or metal-free nanocarbon-based electrocatalysts have been revealed to potentially have effective activity and remarkable durability, which is promising to replace precious metals in some important energy technologies,such as fuel cells, metal–air batteries, and water splitting. In this review, rather than overviewing recent progress completely, we aim to give an in-depth digestion of present achievements, focusing on the different roles of nanocarbons and material design principles. The multifunctionalities of nanocarbon substrates(accelerating the electron and mass transport, regulating the incorporation of active components,manipulating electron structures, generating confinement effects, assembly into 3 D free-standing electrodes) and the intrinsic activity of nanocarbon catalysts(multi-heteroatom doping, hierarchical structure,topological defects) are discussed systematically, with perspectives on the further research in this rising research field. This review is inspiring for more insights and methodical research in mechanism understanding, material design, and device optimization, leading to a targeted and high-efficiency development of energy electrocatalysis.  相似文献   

5.
A mesoporous MnCo2O4 electrode material is made for bifunctional oxygen electrocatalysis. The MnCo2O4 exhibits both Co3O4‐like activity for oxygen evolution reaction (OER) and Mn2O3‐like performance for oxygen reduction reaction (ORR). The potential difference between the ORR and OER of MnCo2O4 is as low as 0.83 V. By XANES and XPS investigation, the notable activity results from the preferred MnIV‐ and CoII‐rich surface. The electrode material can be obtained on large‐scale with the precise chemical control of the components at relatively low temperature. The surface state engineering may open a new avenue to optimize the electrocatalysis performance of electrode materials. The prominent bifunctional activity shows that MnCo2O4 could be used in metal–air batteries and/or other energy devices.  相似文献   

6.
Electrodes for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are required in energy conversion and storage technologies. An assembly strategy involves covalently grafting Co corrole 1 onto Fe3O4 nanoarrays grown on Ti mesh. The resulted electrode shows significantly improved activity and durability for OER and ORR in neutral media as compared to Fe3O4 alone and with directly adsorbed 1 . It also displays higher atom efficiency (at least two magnitudes larger turnover frequency) than reported electrodes. Using this electrode in a neutral Zn‐air battery, a small charge–discharge voltage gap of 1.19 V, large peak power density of 90.4 mW cm?2, and high rechargeable stability for >100 h are achieved, opening a promising avenue of molecular electrocatalysis in a metal–air battery. This work shows a molecule‐engineered electrode for electrocatalysis and demonstrates their potential applications in energy conversion and storage.  相似文献   

7.
《中国化学快报》2023,34(7):107812
Superior bifunctional electrocatalysts with ultra-high stability and excellent efficiency are crucial to boost the oxygen evolution reaction (OER) and the hydrogen evolution reduction (HER) in the overall water splitting (OWS) for the sustainable production of clean fuels. Herein, comprehensive density functional theory (DFT) computations were performed to explore the potential of several single transition metal (TM) atoms anchored on various S-doped black phosphorenes (TM/Snx-BP) for bifunctional OWS electrocatalysis. The results revealed that these candidates display good stability, excellent electrical conductivity, and diverse spin moments. Furthermore, the Rh/S12-BP catalyst was identified as an eligible bifunctional catalyst for OWS process due to the low overpotentials for OER (0.43 V) and HER (0.02 V), in which Rh and its adjacent P atoms were identified as the active sites. Based on the computed Gibbs free energies of OH*, O*, OOH* and H*, the corresponding volcano plots for OER and HER were established. Interestingly, the spin moments and the charge distribution of the active sites determine the catalytic trends of OER and HER. Our findings not only propose a promising bifunctional catalyst for OWS, but also widen the potential application of BP in electrocatalysis.  相似文献   

8.
《中国化学快报》2020,31(6):1588-1592
Porous carbon materials doped with atomically dispersed metal sites(ADMSs) are promising electrocatalysts for oxygen reduction reaction(ORR) electrocatalysis.In this work,we fabricated hierarchical porous nitrogen-doped carbon nanofibers with atomically dispersed Fe-N_4 sites by carbonization of electrospinning iron-based metal-organic frameworks(MOFs)/polyacrylonitrile nanofibers for ORR electrocatalysis.Remarkably,the re sultant carbon nanofibers with atomically dispersed FeN_4 sites exhibit extraordinary electrochemical performance with an onset potential of 0.994 V and a halfwave potential of 0.876 V in alkaline electrolyte,comparable to the benchmark commercial Pt/C catalyst.The high catalytic performance is originated from the unique hierarchically porous 1 D carbon structure and abundant highly active atomically dispersed Fe-N_4 sites.  相似文献   

9.
《中国化学快报》2021,32(9):2841-2845
Substituent effect of metal porphyrin molecular catalysts plays a crucial role in determining the catalytic activity of oxygen electrocatalysis. Herein, substituent position effect of Co porphyrins on oxygen electrocatalysis, including the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), was investigated. Two Co porphyrins, namely 2,4,6-OMe-CoP and 3,4,5-OMe-CoP, were selected as the research objects. The ORR and OER performance was evaluated by drop-coating molecular catalysts on carbon nanotubes (CNTs). The resulted 3,4,5-OMe-CoP/CNT exhibited high bifunctional electrocatalytic activities and better long-term stability for both ORR and OER than 2,4,6-OMe-CoP/CNT. Furthermore, when applied in the Zn-air battery, 3,4,5-OMe-CoP/CNT exhibited comparable performance to that with precious metal-based materials. The enhanced catalytic activity may be attributed to the improved charge transfer rate, mass transfer and hydrophilicity. This work provides an effective strategy to further enhance catalytic activity by introducing substituent position effect, which is of great importance for developing more efficient energy-related electrocatalysts.  相似文献   

10.
Phosphorene, generally defined as two-dimensional (2D) black phosphorus (BP) with monolayered or few-layered structure, has emerged as a promising member of the family of 2D materials. Since its discovery in 2014, extensive research has been focused on broadening its applications, covering the biological, photoelectric, and electrochemical fields, owing to the unique physicochemical and structural properties. As a single-elemental material, phosphorene has demonstrated its applicability for the preparation of efficient electrocatalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), nitrogen reduction reaction (NRR), and other electrocatalytic applications. In this Minireview, a summary of the very recent research progresses of phosphorene in electrocatalysis is offered, with a special focus on the effective synthetic strategies towards performance improvement. In the concluding section, challenges and perspectives are also discussed.  相似文献   

11.
The Ti-Supported MnO_2 electrode was modified by introducing SnO_2+RuO_2+MnO_2 as an intermediate layer into the Ti/MnO_2 interface. The anodic polarization curves were measured at various temperatures ranging from 30 to 80℃ and the activation energy for the oxygen evolution reaction was evaluated. The experimental activation energy increased linearly with increasing the overpotential. The activation energy at the equilibrium potential was linearly correlated with the difference between the crystal field stabilization energies of Mn~(4+) at initial state and Mn~(4+) at transition state. The electrocatalysis characteristics of the anode were discussed by means of the mechanism of the substitution reaction of the ligand(S_N1 and S_N2) and molecular orbital theory. The results show that the anode has better electrocatalystic characteristics.  相似文献   

12.
Active oxygen evolution reaction electrocatalysts for water splitting have received great attention because of their importance in the utilization of renewable energy sources. Here, the electrochemical oxygen evolution reaction activities of a nanoporous gold (NPG)‐based electrode in acidic media are investigated. The dependence of the oxygen evolution reaction activity on the NPG surface area shows that the large electrochemical surface areas of the NPG are effectively utilized to enhance electrocatalytic activity. The NPG surfaces are modified with Pt using atomic layer electrodeposition methods, and the resulting NPG@Pt exhibited enhanced electrocatalytic activities compared to those of the NPG and flat Pt electrodes. Ir‐modified NPG (NPG@Ir) electrodes are prepared by spontaneous exchange of Ir on NPG surfaces and exhibit enhanced electrocatalytic activity compared to that of flat Ir surfaces. The modification of NPG@Pt with Ir results in NPG@Pt/Ir electrodes, and their electrocatalytic activities exceed those of NPG@Ir. The enhanced oxygen evolution reaction activity on NPG@Pt/Ir over that on NPG@Ir surfaces is examined by X‐ray photoelectron spectroscopy. The oxygen evolution reaction activity on NPG@Pt/Ir surfaces demonstrates synergistic electrocatalysis between the nanoporous surface structure and active electrocatalytic components.  相似文献   

13.
Superstructures have attracted great interest owing to their potential applications. Herein, we report the first scalable preparation of a porous nickel-foam-templated superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles. Uniform two-dimensional (2D) Co-metal organic framework (MOF) nanosheets (Co-MNS) grow on nickel foam, followed by a MOF-mediated tandem (carbonization/phosphidation) pyrolysis. The resulting superstructure has a porous 3D interconnected network with well-arranged 2D carbon nanosheets on it, in which ultrafine cobalt phosphide nanoparticles are tightly immobilized. A single piece of this superstructure can be directly used as a self-supported electrode for electrocatalysis without any binders. This “one-piece” porous superstructure with excellent mass transport and electron transport properties, and catalytically active cobalt phosphide nanoparticles with ultrasmall size (3–4 nm), shows excellent trifunctional electrocatalytic activities for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR), achieving great performances in water splitting and Zn–air batteries.  相似文献   

14.
Silica-derived nanostructured catalysts (SDNCs) are a class of materials synthesized using nanocasting and templating techniques, which involve the sacrificial removal of a silica template to generate highly porous nanostructured materials. The surface of these nanostructures is functionalized with a variety of electrocatalytically active metal and non-metal atoms. SDNCs have attracted considerable attention due to their unique physicochemical properties, tunable electronic configuration, and microstructure. These properties make them highly efficient catalysts and promising electrode materials for next generation electrocatalysis, energy conversion, and energy storage technologies. The continued development of SDNCs is likely to lead to new and improved electrocatalysts and electrode materials. This review article provides a comprehensive overview of the recent advances in the development of SDNCs for electrocatalysis and energy storage applications. It analyzes 337,061 research articles published in the Web of Science (WoS) database up to December 2022 using the keywords “silica”, “electrocatalysts”, “ORR”, “OER”, “HER”, “HOR”, “CO2RR”, “batteries”, and “supercapacitors”. The review discusses the application of SDNCs for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), supercapacitors, lithium-ion batteries, and thermal energy storage applications. It concludes by discussing the advantages and limitations of SDNCs for energy applications.  相似文献   

15.
16.
Producing stable but active materials is one of the enduring challenges in electrocatalysis and other types of catalysis. Producing branched nanoparticles is one potential solution. Controlling the number of branches and branch size of faceted branched nanoparticles is one of the major synthetic challenges to achieve highly active and stable nanocatalysts. Herein, we use a cubic-core hexagonal-branch mechanism to synthesize branched Ru nanoparticles with control over the size and number of branches. This structural control is the key to achieving high exposure of active {10–11} facets and optimum number of Ru branches that enables improved catalytic activity for oxygen evolution reaction while maintaining high stability.  相似文献   

17.
Pt-group metal (PGM) electrocatalysts with unique electronic structures and irreplaceable comprehensive properties play crucial roles in electrocatalysis. Anion engineering can create a series of PGM compounds (such as RuP2, IrP2, PtP2, RuB2, Ru2B3, RuS2, etc.) that provide a promising prospect for improving the electrocatalytic performance and use of Pt-group noble metals. This review seeks the electrochemical activity origin of anion-modulated PGM compounds, and systematically analyzes and summarizes their synthetic strategies and energy-relevant applications in electrocatalysis. Orientation towards the sustainable development of nonfossil resources has stimulated a blossoming interest in the design of advanced electrocatalysts for clean energy conversion. The anion-modulated strategy for Pt-group metals (PGMs) by means of anion engineering possesses high flexibility to regulate the electronic structure, providing a promising prospect for constructing electrocatalysts with superior activity and stability to satisfy a future green electrochemical energy conversion system. Based on the previous work of our group and others, this review summarizes the up-to-date progress on anion-modulated PGM compounds (such as RuP2, IrP2, PtP2, RuB2, Ru2B3, RuS2, etc.) in energy-related electrocatalysis from the origin of their activity and synthetic strategies to electrochemical applications including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), N2 reduction reaction (NRR), and CO2 reduction reaction (CO2RR). At the end, the key problems, countermeasures and future development orientations of anion-modulated PGM compounds toward electrocatalytic applications are proposed.  相似文献   

18.
Besides their use in fuel cells for energy conversion through the oxygen reduction reaction (ORR), carbon‐based metal‐free catalysts have also been demonstrated to be promising alternatives to noble‐metal/metal oxide catalysts for the oxygen evolution reaction (OER) in metal–air batteries for energy storage and for the splitting of water to produce hydrogen fuels through the hydrogen evolution reaction (HER). This Review focuses on recent progress in the development of carbon‐based metal‐free catalysts for the OER and HER, along with challenges and perspectives in the emerging field of metal‐free electrocatalysis.  相似文献   

19.
Exploring the application of high-efficiency bifunctional oxygen catalysts to rechargeable zinc-air batteries has been a research hotspot in recent years. We succeeded in obtaining NiCo2NS with a hollow capsule structure through the self-sacrificing template method, which has a larger specific surface area and can provide more active sites for electrocatalysis relative to his solid. The introduction of S can change the valence distribution of N and the electronic structure of the M−N bond, so that NiCo2NS exhibits excellent performance in the overpotential and stability of the oxygen reduction and oxygen evolution reactions. It shows an overpotential of 154 mV at 10 mA cm−2 and a half-wave potential of 0.76 V. When used as a bi-functional catalyst in zinc-air batteries, it exhibits good stability within 400 h. The flexible battery assembled by NiCo2NS also shows excellent performance, and can be cycled stably for 20 h. The current maintains good stability when it is bent at different angles during the cycle.  相似文献   

20.
IntroductionAs typical contaminants,phenolic pollutants,are toxic and are found in oil refinery and coke,chemical and plastic industries. Conventionaltreatment processes such as activated carbonadsorption,extraction and biological treatment cannot make the pollutants complete mineralization orwill lead to recontamination. Recently,electrochemical techniques have been extensivelyapplied to such a kind of wastewater treatment,mainly because of their amenability to automation,high efficiency and …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号