首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Present investigation analyses the Ljapunov stability of the systems of ordinary differential equations arising in then-th step of the Faedo-Galerkin approximation for the nonlinear wave-equation $$\begin{gathered} u_{tt} - u_{xx} + M(u) = 0 \hfill \\ u(0,t) = u(1,t) = 0 \hfill \\ u(x,0) = \Phi (x); u_t (x,0) = \Psi (x). \hfill \\ \end{gathered}$$ For the nonlinearities of the classM (u)=u 2 p+1 ,pN, ann-independent stability result is given. Thus also the stability of the original equation is shown.  相似文献   

2.
3.
The paper treats of the numerical approximation for the following boundary value problem: $$ \left\{ \begin{gathered} u_t (x,t) - u_{xx} (x,t) = 0, 0 < x < 1, t \in (0,T), \hfill \\ u(0,t) = 1, u_x (1,t) = - u^{ - p} (1,t), t \in (0,T), \hfill \\ u(x,0) = u_0 (x) > 0, 0 \leqslant x \leqslant 1, \hfill \\ \end{gathered} \right. $$ where p > 0, u 0C 2([0, 1]), u 0(0) = 1, and u′ 0(1) = ?u 0 ?p (1). Conditions are specified under which the solution of a discrete form of the above problem quenches in a finite time, and we estimate its numerical quenching time. It is also proved that the numerical quenching time converges to real time as the mesh size goes to zero. Finally, numerical experiments are presented which illustrate our analysis.  相似文献   

4.
In this paper, we establish some error bounds for the continuous piecewise linear finite element approximation of the following problem: Let Ω be an open set in ? d , withd=1 or 2. GivenT>0,p ∈ (1, ∞),f andu 0; finduK, whereK is a closed convex subset of the Sobolev spaceW 0 1,p (Ω), such that for anyvK $$\begin{gathered} \int\limits_\Omega {u_1 (\upsilon - u) dx + } \int\limits_\Omega {\left| {\nabla u} \right|^{p - 2} } \nabla u \cdot \nabla (\upsilon - u) dx \geqslant \int\limits_\Omega {f(\upsilon - u) dx for} a.e. t \in (0,T], \hfill \\ u = 0 on \partial \Omega \times (0,T] and u(0,x) = u_0 (x) for x \in \Omega . \hfill \\ \end{gathered} $$ We prove error bounds in energy type norms for the fully discrete approximation using the backward Euler time discretisation. In some notable cases, these error bounds converge at the optimal rate with respect to the space discretisation, provided the solutionu is sufficiently regular.  相似文献   

5.
In this paper we extend the results of Brezis and Nirenberg in [4] to the problem $$\left\{ \begin{gathered} Lu = - D_i (a_{ij} (x)D_j u) = b(x)u^p + f(x,u) in\Omega , \hfill \\ p = (n + 2)/(n - 2) \hfill \\ u > 0 in\Omega , u = 0 \partial \Omega , \hfill \\ \end{gathered} \right.$$ whereL is a uniformly elliptic operator,b(x)≥0,f(x,u) is a lower order perturbation ofu p at infinity. The existence of solutions to (A) is strongly dependent on the behaviour ofa ij (x), b(x) andf(x, u). For example, for any bounded smooth domain Ω, we have \(a_{ij} \left( x \right) \in C\left( {\bar \Omega } \right)\) such thatLu=u p possesses a positive solution inH 0 1 (Ω). We also prove the existence of nonradial solutions to the problem ?Δu=f(|x|, u) in Ω,u>0 in Ωu=0 on ?Ω, Ω=B(0,1). for a class off(r, u).  相似文献   

6.
In this paper we present the analysis of an algorithm of Uzawa type to compute solutions of the quasi variational inequality $$\begin{gathered} (QVI)\left( {\frac{{\partial ^2 u}}{{\partial t^2 }},\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + \left( {\frac{{\partial u}}{{\partial x}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \left( {\frac{{\partial ^2 u}}{{\partial x\partial t}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \hfill \\ + \left[ {u(1,t) + \frac{{\partial u}}{{\partial t}}(1,t)} \right]\left[ {\upsilon (1) - \frac{{\partial u}}{{\partial t}}(1,t)} \right] + J(u;\upsilon ) - J\left( {u;\frac{{\partial u}}{{\partial t}}} \right) \geqslant \hfill \\ \geqslant \left( {f,\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + F(t)\left[ {\upsilon (0) - \frac{{\partial u}}{{\partial t}}(0,t)} \right],t > 0,\forall \upsilon \in H^1 (0,1), \hfill \\ \end{gathered} $$ which is a model for the dynamics of a pile driven into the ground under the action of a pile hammer. In (QVI) (...) is the scalar product inL 2(0, 1) andJ(u;.) is a convex functional onH 1(0, 1), for eachu, describing the soil-pile friction effect.  相似文献   

7.
We study the initial boundary value problem for the nonlinear wave equation: (*) $$\left\{ \begin{gathered} \partial _t^2 u - (\partial _r^2 + \frac{{n - 1}}{r}\partial _r )u = F(\partial _t u,\partial _t^2 u),t \in \mathbb{R}^ + ,R< r< \infty , \hfill \\ u(0,r) = \in _0 u_0 (r),\partial _t u(0,r) = \in _0 u_1 (r),R< r< \infty , \hfill \\ u(t,R) = 0,t \in \mathbb{R}^ + , \hfill \\ \end{gathered} \right.$$ wheren=4,5,u 0,u 1 are real valued functions and ∈0 is a sufficiently small positive constant. In this paper we shall show small solutions to (*) exist globally in time under the condition that the nonlinear termF:?2→? is quadratic with respect to ? t u and ? t 2 u.  相似文献   

8.
We define the complete problem of a two-stage linear programming under uncertainty, to be:
$$\begin{gathered} Minimize z(x) = E_\xi \{ cx + q^ + y^ + + q^ - y^ - \} \hfill \\ subject to Ax = b \hfill \\ Tx + Iy^ + + Iy^ - = \xi \hfill \\ x \geqq 0,y^ + \geqq 0,y^ - \geqq 0 \hfill \\ \end{gathered} $$  相似文献   

9.
This paper is concerned with the Cauchy problem for the nonlinear parabolic equation $${\partial _t}u| = \vartriangle u + F(x,t,u,\nabla u){\text{ in }}{{\text{R}}^N} \times (0,\infty ),{\text{ }}u(x,0) = \varphi (x){\text{ in }}{{\text{R}}^N},$$ , where $$\begin{gathered} N \geqslant 1, \hfill \\ F \in C(R^N \times (0,\infty ) \times R \times R^N ), \hfill \\ \phi \in L^\infty (R^N ) \cap L^1 (R^N ,(1 + |x|^K )dx)forsomeK \geqslant 0 \hfill \\ \end{gathered} $$ . We give a sufficient condition for the solution to behave like a multiple of the Gauss kernel as t → ∞ and obtain the higher order asymptotic expansions of the solution in W 1,q (R N ) with 1 ≤ q ≤ ∞.  相似文献   

10.
We concern the sublinear Schrödinger-Poisson equations \(\left\{ \begin{gathered}- \Delta u + \lambda V\left( x \right)u + \phi u = f\left( {x,u} \right)in{\mathbb{R}^3} \hfill \\- \Delta \phi = {u^2}in{\mathbb{R}^3} \hfill \\ \end{gathered} \right.\) where λ > 0 is a parameter, VC(R3,[0,+∞)), fC(R3×R,R) and V-1(0) has nonempty interior. We establish the existence of solution and explore the concentration of solutions on the set V-1(0) as λ → ∞ as well. Our results improve and extend some related works.  相似文献   

11.
Consider the following functional equations of neutral type: $$\begin{gathered} (i) (d/dt)D(t,x_t ) = L(t,x_t ), \hfill \\ (ii) (d/dt)D(t,x_t ) = L(t,x_t ) + B(t)u(t), \hfill \\ (iii) (d/dt)D(t,x_t ) = L(t,x_t ) + B(t)u(t) + f(t,x(t),u(t)), \hfill \\ \end{gathered} $$ whereD, L are bounded linear operators fromC([?h, 0],E n) intoE n for eacht?(σ, ∞) =J, B is ann ×m continuous matrix function,u:JC m is square integrable with values in the unitm-dimensional cubeC m, andf(t, 0, 0)=0. We prove that, if the system (i) is uniformly asymptotically stable and if the controlled system (ii) is controllable, then the system (iii) is null-controllable with constraints, provided that $$f = f_1 + f_2 $$ , where $$\begin{gathered} |f_1 (t,\phi ,0)| \leqslant \varepsilon \parallel \phi \parallel , |f_2 (t,\phi ,0)| \leqslant \pi (t)\parallel \phi \parallel , t \geqslant \sigma , \hfill \\ \Pi = \int_0^\infty {\pi (t)dt< \infty .} \hfill \\ \end{gathered} $$   相似文献   

12.
LetΛ 1(Ω) be the first eigenvalue of the vector-valued problem $$\begin{gathered} \Delta u + \alpha grad div u + \Delta u = 0 in \Omega , \hfill \\ u = 0 in \partial \Omega , \hfill \\ \end{gathered} $$ , withα>0. Letλ 1(Ω) be the first eigenvalue of the scalar problem $$\begin{gathered} \Delta u + \lambda u = 0 in \Omega , \hfill \\ u = 0 on \partial \Omega . \hfill \\ \end{gathered} $$ . The paper contains a proof of the inequality $$\left( {1 + \frac{\alpha }{n}} \right)\lambda _1 \left( \Omega \right) > \Lambda _1 \left( \Omega \right) > \left( \Omega \right)$$ and improves recent estimates of Sprössig [15] and Levine and Protter [11]. Moreover we show, ifΩ is a ball, that an eigensolution u1, associated withΛ 1(Ω) is not unique and that the eigensolutions for this and higher eigenvalues are never rotationally invariant. Finally we calculate some eigensolutions explicitly.  相似文献   

13.
More work is done to study the explicit, weak and strong implicit difference solution for the first boundary problem of quasilinear parabolic system: $$\begin{gathered} u_t = ( - 1)^{M + 1} A(x,t,u, \cdots ,u_x M - 1)u_x 2M + f(x,t,u, \cdots u_x 2M - 1), \hfill \\ (x,t) \in Q_T = \left| {0< x< l,0< t \leqslant T} \right|, \hfill \\ u_x ^k (0,t) = u_x ^k (l,t) = 0 (k = 0,1, \cdots ,M - 1),0< t \leqslant T, \hfill \\ u(x,0) = \varphi (x),0 \leqslant x \leqslant l, \hfill \\ \end{gathered} $$ whereu, ?, andf arem-dimensional vector valued functions, A is anm×m positively definite matrix, and $u_t = \frac{{\partial u}}{{\partial t}},u_x ^k = \frac{{\partial ^k u}}{{\partial x^k }}$ . For this problem, the convergence of iteration for the general difference schemes is proved.  相似文献   

14.
We consider in this paper the limit behavior of the solutionsu ? of the problem $$\begin{gathered} - div(a^\varepsilon Du^\varepsilon ) + \gamma u^\varepsilon = H^\varepsilon (x, u^\varepsilon , Du^\varepsilon ), \hfill \\ u^\varepsilon \in H_0^1 (\Omega ) \cap L^\infty (\Omega ), \hfill \\ \end{gathered}$$ whereH ? has quadratic growth inDu ? anda ? (x) is a family of matrices satisfying the general assumptions of abstract homogenization. We also consider the problem $$\begin{gathered} - div(a^\varepsilon Du^\varepsilon ) + G^\varepsilon (x, u^\varepsilon , Du^\varepsilon ) = f \in H^{ - 1} (\Omega ), \hfill \\ u^\varepsilon \in H_0^1 (\Omega ), G^\varepsilon (x, u^\varepsilon , Du^\varepsilon ) \in L^1 (\Omega ), u^\varepsilon G^\varepsilon (x, u^\varepsilon , Du^\varepsilon ) \in L^1 (\Omega ) \hfill \\ \end{gathered}$$ whereG ? has quadratic growth inDu ? and satisfiesG ? (x, s, ξ)s ≥ 0. Note that in this last modelu ? is in general unbounded, which gives extra difficulties for the homogenization process. In both cases we pass to the limit and obtain an homogenized equation having the same structure.  相似文献   

15.
Let Ω ? ? n , n ? 2, be a bounded connected domain of the class C 1,θ for some θ ∈ (0, 1]. Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem $$\begin{gathered} u \in W^1 L^\Phi \left( \Omega \right), - div\left( {\Phi '\left( {\left| {\nabla u} \right|} \right)\frac{{\nabla u}} {{\left| {\nabla u} \right|}}} \right) + V\left( x \right)\Phi '\left( {\left| u \right|} \right)\frac{u} {{\left| u \right|}} = f\left( {x,u} \right) + \mu h\left( x \right) in \Omega , \hfill \\ \frac{{\partial u}} {{\partial n}} = 0 on \partial \Omega , \hfill \\ \end{gathered}$$ where Φ is a Young function such that the space W 1 L Φ(Ω) is embedded into exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V (x) is a continuous potential, h ∈ (L Φ(Ω))* is a nontrivial continuous function, µ ? 0 is a small parameter and n denotes the outward unit normal to ?Ω.  相似文献   

16.
The paper gives some solvability conditions of the Dirichlet problem for the second order elliptic equation $$ - div(A(x)\nabla u) + (\bar b(x),\nabla u) - div(\bar c(x)u) + d(x)u = f(x) - divF(x),x \in Q,u|_{\partial Q} = u_0 \in L_2 (\partial Q) $$ in bounded domain Q ? R n (n ≥ 2) with smooth boundary ?QC 1. In particular, it is proved that if the homogeneous problem has only the trivial solution, then for any u 0L 2(?Q) and f, F from the corresponding functional spaces the solution of the non-homogeneous problem exists, from Gushchin’s space $ C_{n - 1} (\bar Q) $ and the following inequality is true: $$ \begin{gathered} \left\| u \right\|_{C_{n - 1} (\bar Q)}^2 + \mathop \smallint \limits_Q r\left| {\nabla u} \right|^2 dx \leqslant \hfill \\ \leqslant C\left( {\left\| {u_0 } \right\|_{L_2 (\partial Q)}^2 + \mathop \smallint \limits_Q r^3 (1 + |\ln r|)^{3/2} f^2 dx + \mathop \smallint \limits_Q r(1 + |\ln r|)^{3/2} |F|^2 dx} \right) \hfill \\ \end{gathered} $$ where r(x) is the distance from a point xQ to the boundary ?Q and the constant C does not depend on u 0, f and F.  相似文献   

17.
Consider the following Bolza problem: $$\begin{gathered} \min \int {h(x,u) dt,} \hfill \\ \dot x = F(x) + uG(x), \hfill \\ \left| u \right| \leqslant 1, x \in \Omega \subset \mathbb{R}^2 , \hfill \\ x(0) = x_0 , x(1) = x_1 . \hfill \\ \end{gathered} $$ We show that, under suitable assumptions onF, G, h, all optimal trajectories are bang-bang. The proof relies on a geometrical approach that works for every smooth two-dimensional manifold. As a corollary, we obtain existence results for nonconvex optimization problems.  相似文献   

18.
The following stochastic control problem is considered: to minimize the discounted expected total cost $$J(x;u) = E\int_0^\infty {\exp ( - at)[\phi } (x_l ) + |u_l (x)|]dt,$$ subject todx t =u t (x)dt+dw t ,x 0=x, |u t |≤1, (w t ) a Wiener process, α>0. All bounded by unity, measurable, and nonanticipative functionalsu t (x) of the state processx t are admissible as controls. It is proved that the optimal law is of the form $$\begin{gathered} u_t^* (x) = - 1,x_t > b, \hfill \\ u_t^* (x) = 0,|x_t | \leqslant b, \hfill \\ u_t^* (x) = 1,x_t< - b, \hfill \\ \end{gathered}$$ for some switching pointb > 0, characterized in terms of the function ø(·) through a transcendental equation.  相似文献   

19.
We consider the problems of dientifying the parametersa ij (x), b i (x), c(x) in a 2nd order, linear, uniformly elliptic equation, $$\begin{gathered} - \partial _i (a_{ij} (x)\partial _j u) + b_i (x)\partial _i u + c(x)u = f(x),in\Omega , \hfill \\ \partial _v u|_{\partial \Omega } = \phi (s),s \in \partial \Omega , \hfill \\ \end{gathered} $$ on the basis of measurement data $$u(s) = z(s),s \in B \subset \partial \Omega ,$$ with an equality constraint and inequality constraints on the parameters. The cost functionals are one-sided Gâteaux differentiable with respect to the state variables and the parameters. Using the Duboviskii-Milyutin lemma, we get maximum principles for the identification problems, which are necessary conditions for the existence of optimal parameters.  相似文献   

20.
We study regularity results for solutions uHW 1,p (Ω) to the obstacle problem $$\int_\Omega \mathcal{A} \left( {x,\nabla _{\mathbb{H}^u } } \right)\nabla _\mathbb{H} \left( {v - u} \right)dx \geqslant 0 \forall v \in \mathcal{K}_{\psi ,u} \left( \Omega \right)$$ such that u ? ψ a.e. in Ω, where $xxx$ , in Heisenberg groups ? n . In particular, we obtain weak differentiability in the T-direction and horizontal estimates of Calderon-Zygmund type, i.e. $$\begin{gathered} T\psi \in HW_{loc}^{1,p} \left( \Omega \right) \Rightarrow Tu \in L_{loc}^p \left( \Omega \right), \hfill \\ \left| {\nabla _{\mathbb{H}\psi } } \right|^p \in L_{loc}^q \left( \Omega \right) \Rightarrow \left| {\nabla _{\mathbb{H}^u } } \right|^p \in L_{loc}^q \left( \Omega \right), \hfill \\ \end{gathered}$$ where 2 < p < 4, q > 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号