首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents experimental measurements of the velocity profiles in an expanding fluid jet. The data were obtained from analysis of birefringence measurements over the flow field. A new method of photoviscous analysis to determine the pertinent flow information from isochromate data alone was developed as part of the investigation. A numerical method for obtaining the flow data from the optical measurements is presented.  相似文献   

2.
A general heat transfer correlation for non-boiling gas–liquid flow with different flow patterns in horizontal pipes is proposed. In order to overcome the effect of flow pattern on heat transfer, a flow pattern factor (effective wetted-perimeter) is developed and introduced into our proposed correlation. To verify the correlation, local heat transfer coefficients and flow parameters were measured for air–water flow in a pipe in the horizontal position with different flow patterns. The test section was a 27.9 mm ID stainless steel pipe with a length to diameter ratio of 100. A total of 114 data points were taken by carefully coordinating the liquid and gas superficial Reynolds number combinations. The heat transfer data were measured under a uniform wall heat flux boundary condition ranging from about 3000 W/m2 to 10,600 W/m2. The superficial Reynolds numbers ranged from about 820 to 26,000 for water and from about 560 to 48,000 for air. These experimental data including different flow patterns were successfully correlated by the proposed general two-phase heat transfer correlation with an overall mean deviation of 5.5%, a standard deviation of 11.7%, and a deviation range of −18.3% to 37.0%. Ninety three percent (93%) of the data were predicted within ±20% deviation.  相似文献   

3.
Results from new experiments on the lubricated pipelining of emulsified waxy crude oil and No. 6 fuel oil are presented and compared with other sources of literature. A correlation formula which estimates the holdup fraction is introduced and evaluated for all available experimental data. A simple theory is given which is based on the concentric core-annular flow model and leads to a Reynolds number and friction factor which reduce a large body of experimental data onto one curve; with the best results in the high Reynolds number flow regime.  相似文献   

4.
This paper reports the results of an experimental study of the flow-induced vibration of a heat exchanger tube array subjected to two-phase cross-flow of refrigerant 11. The primary concern of the research was to develop a methodology for predicting the critical flow velocities for fluidelastic instability which better characterize the physics of two-phase flows. A new method is proposed for calculating the average fluid density and equivalent flow velocity of the two-phase fluid, using a newly developed void fraction model to account for the difference in velocity between the gas and liquid phases. Additionally, damping measurements in two-phase flow were made and compared with the data of other researchers who used a variety of modelling fluids. The results show that the two-phase damping follows a similar trend with respect to homogeneous void fraction, and when normalized, agree well with the data in the literature. The fluidelastic threshold data of several researchers who used a variety of fluids, is re-examined using the proposed void fraction model, and the results show a remarkable change in trend with flow regime. The data corresponding to the bubbly flow regime shows no significant deviation from the trend established by Connors' theory. However, the data corresponding to the intermittent flow regime show a significant decrease in stability which is nearly independent of the mass-damping parameter. It is believed that the velocity fluctuations that are inherent in the intermittent flow regime are responsible for tripping the instability, causing lower than expected stability of the bundle.  相似文献   

5.
An analytical and experimental investigation including vibratory effects of flashing flow in a tube with a sharp edged entrance is presented. A free streamline flow model is applied to predict choking in single-component two-phase flow. By identifying three separate regimes (i.e. jet flow, two-phase homogeneous flow, and single-phase liquid flow) in the flashing flow system, an expression is obtained for the prediction of the minimum stagnation pressure loss under choked flow conditions. A normal shock located between the flashing two-phase mixture and the single-phase liquid was experimentally observed. The location of the shock is predicted as a function of the stagnation pressure drop across the tube. The analytical predictions are verified by experimental data.  相似文献   

6.
A novel perspective to high-speed cross-hot-wire calibration methodology   总被引:1,自引:0,他引:1  
A practical cross-hot-wire calibration and data reduction methodology for instantaneous measurements of mass flux and flow angle is developed for two dimensional subsonic compressible flows. Historically, data reduction for flow conditions of 0.4?<?M?<?1.2 is regarded as problematic, even in the simplified case of flow normal mounted wires. Thus, in comparison with the incompressible and supersonic conditions, the literature addressing these flow regimes is quite limited. The present study addresses this void by relating the wire voltages to flow conditions through renormalized, Mach and overheating independent, nondimensional quantities. Therefore, a short and robust calibration can be performed in an unheated free jet facility with applicability toward a broad range of planar flow conditions. This disposes the need for typical closed loop calibration wind tunnels which vary flow velocity, density and temperature independently to parameterize the voltage dependency in a purely empirical manner.  相似文献   

7.
A viscoelastic plastic model for suspension of small particles in polymer melts has been developed. In this model, the total stress is assumed to be the sum of stress in the polymer matrix and the filler network. A nonlinear viscoelastic model along with a yield criterion were used to represent the stresses in the polymer matrix and the filler network, respectively. The yield function is defined in terms of differential equations with an internal parameter. The internal parameter models the evolution of structure changes during floc rupture and restoration. The theoretical results were obtained for steady and oscillatory shear flow and compared with experimental data for particle filled thermoplastic melt. The experimental data included the steady state shear strress over a wide range of shear rates, the transient stress in a start up shear flow, stress relaxation after cessation of a steady state shear flow, the step shear and the oscillatory shear flow at various amplitudes.  相似文献   

8.
Various flow pattern maps for two-phase gas—liquid flow in horizontal pipes are tested against the 5935 flow pattern observations presently contained in the UC Multiphase Pipe Flow Data Bank.A new flow regime correlation representing an extension of the work done by Govier and Aziz [3] is presented and is shown to be in better agreement with the data than the other correlations tested. A computer program for this correlation is included.It is also shown that there is no significant improvement obtained by including the effects of the physical properties of the fluids using any of the physical property parameters which have been proposed so far.  相似文献   

9.
A model is described for the meso- and micro-flow through an array of oriented fibre tows with meso-channels between the tows. Axial Stokes's flow was considered in the meso-channels and Darcy's law was applied within the porous fibre tows, taking into account injection pressure and capillary pressures in both types of flow. Transverse flow transfer was modelled from the leading flow front to the lagging flow and a partial-slip boundary condition was applied at the permeable boundaries of meso-channels. Flow visualisation experiments and microstructural characterisation of laminates provided appropriate experimental data for model validation. In this, the predictions for the progress of the leading meso-flow were in excellent agreement with the experimental data. Parametric studies followed including the effects of injection pressure and meso-channel size.  相似文献   

10.
This work focuses on gas/non-Newtonian power-law fluid stratified pipe flow. Two different theoretical approaches to obtain pressure gradient and hold-up predictions are presented: the steady fully developed two-fluid model and the pre-integrated model. The theoretical predictions are compared with experimental data available for horizontal and for slightly downward inclined air/shear thinning fluid stratified flow taken from literature. The predictions of the pre-integrated model are validated showing a good agreement when compared with experimental data. The criteria for the transition from the stratified flow pattern are applied to gas/non-Newtonian stratified flow. The neutral stability analysis (smooth/wavy stratified flow) and the well-posedness (existence region of stratified flow) of governing equations are carry out. The predicted transition boundaries are obtained using the steady fully developed two-fluid model and the pre-integrated model, where the shape factors and their derivatives are accounted for. A comparison between the predicted boundaries and experimental flow pattern maps is presented and shows a good agreement. A comment on the shear stress modeling by the pre-integrated model is provided.  相似文献   

11.
A PIV-based pressure estimation methodology is used to compute the wall pressure from the velocity field of a turbulent impinging jet flow. A simplified formulation (2D-2C) is applied to velocity fields issued from PIV data. The ability of the method to qualitatively estimate the wall pressure signature of a 3D unsteady impinging jet flow using only two velocity components in a plane is demonstrated. Nevertheless, the 2D flow assumption used in the context of planar measurements involves an underestimation of the wall pressure values all along the radial direction. The formulation based on the full integral formalism (3D-3C), computed from DNS data without any assumption on the flow, provides a reference solution. The contributions of the surface and volume integrals to the pressure coefficient are assessed. It is shown that the most important contribution to the wall pressure comes from the volume integral. Then the underestimation observed for the simplified formulation is mostly linked with the assumptions considered for the source term computation. The effect of each assumption is quantitatively analysed with the help of the DNS data and some ways to improve the simplified methodology are finally proposed.  相似文献   

12.
This paper is a continuation of the authors’ previous work. Two-phase air–water flow experiments are performed in a horizontal circular micro-channel. The test section is made of a fused silica tube with an inner diameter of 0.15 mm and a length of 104 mm. The flow phenomena, which are liquid/unstable annular alternating flow (LUAAF), liquid/annular alternating flow (LAAF), and annular flow, are observed and recorded by a high-speed camera mounted together with a stereozoom microscope. A flow pattern map is presented in terms of the phase superficial velocities and is compared with those of other researchers obtained from different working fluids. Image analysis is performed to determine the void fraction, which increases non-linearly with increasing volumetric quality. It is revealed that the two-phase frictional multiplier data show a dependence on flow pattern rather than mass flux. Based on the present data, a new pressure drop correlation is proposed for practical applications. According to the present study, in general the data for the two-phase air–water flow characteristics are found to comply with those of working fluids other than air–water mixtures.  相似文献   

13.
A data compression method based on image encoding techniques is presented for a flow simulation data set. An input flow field data set is converted into the octree structure by discrete wavelet transform, and then quantized finely or coarsely depending on its importance in the flow field. Embedded zerotree wavelet encoding as the image encoding technique and entropy encoding reduce the data size by making use of the octree structure created previously. The present compression method is incorporated in a block‐structured Cartesian mesh method called Building‐Cube method. The Building‐Cube method gives not only good performance in the flow simulation but also consistency with the embedded zerotree wavelet encoding in the data compression. Three compression cases for incompressible and compressible flow simulations, including a large‐scale simulation with O(10 8) mesh points, demonstrate that the present compression method gives both high compression ratios and good qualities of compressed data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
孙杰  王轩  宋汉文  顾明 《力学季刊》2007,28(3):479-484
桥梁断面颤振气动导数的准确识别是桥梁空气动力稳定性研究的基础,一直是桥梁风工程研究领域的前沿课题。基于工况模态分析理论,本文首先导出了紊流条件下桥梁颤振气动导数辨识的完整方法;其次,将上述数据处理方式运用到由均匀流条件引起的自由衰减振动中,得出与紊流情况类似的结果。本文提出的方法能够用同样的辨识原理、同一个数据处理程序统一地对紊流和均匀流下的桥梁气动导数进行辨识;最后,利用数值仿真算例验证上述理论。  相似文献   

15.
A multi-fidelity reduced-order model (ROM), which incorporates low-fidelity data to improve the prediction of high-fidelity results, is proposed for the reconstruction of steady flow field at different conditions. The spatial basis functions of low-fidelity and high-fidelity data, which are generated for all training sets are extracted separately by proper orthogonal decomposition. Then a surrogate model is used to construct mappings between the mode coefficients obtained from low-fidelity and the high-fidelity data. In the online stage, both the low-fidelity flow at the predicted state and the surrogate model are needed to predict the mode coefficients of the high-fidelity flow, and the high-fidelity flow field is subsequently reconstructed. This method differs from existing surrogate-based reduced-order modeling method because it allows the use of partial physical information for flow estimation, which is coming from the low-fidelity data instead of adopting a black-box mapping between system state and the projection coefficients. Numerical studies are presented for a lid-driven cavity problem and transonic flow past a NACA0012 airfoil. Two low-fidelity models, with either a coarse mesh or a lower numerical order, are considered respectively. Results show that the proposed multi-fidelity ROM predicts the flow field accurately and outperforms the traditional methods in both interpolated and extrapolated conditions.  相似文献   

16.
The approach to determine pressure fields and integral loads from planar velocimetry data is discussed, in relation to the implementation for incompressible and compressible flows around two-dimensional objects. The method relies upon the application of control-volume approaches in combination with the deduction of the pressure field from the experimental data, by making use of the flow constitutive equations. In this paper the implementation for two specific application areas is addressed. The first is time-mean pressure field and force evaluation from velocity ensemble statistics, as obtained from time-uncorrelated PIV acquisition, for incompressible flow. Two test cases are considered for this flow regime: the unsteady vortical flow around a square section cylinder at incidence, as well as the force characterization of a low-speed airfoil. The second topic considers the extension of the method to steady compressible flow, with the supersonic flow around a bi-convex airfoil as experimental test case. As in this flow regime the density appears as an extra unknown in the momentum equation, additional flow equations need to be invoked. A convenient approach for this was found, using the gas law and the adiabatic flow condition, with which the pressure-integration procedure becomes essentially the same as for the incompressible case.  相似文献   

17.
A theoretical study is conducted to model the flow characteristics of three-phase stratified wavy flow in horizontal pipelines with a focus on the low liquid loading condition, which is commonly observed in wet gas pipelines. The model predictions are compared to the experimental data of Karami et al. (2016a, b). These experiments were conducted with water or 51 wt% of MEG in the aqueous phase, and inlet aqueous phase fraction values from 0 to100%.Modeling of three-phase flow can be described as a combination of two-phase gas-liquid flow modeling, and a liquid phase oil-water mixing modeling. A mechanistic model is proposed to predict flow characteristics of three-phase stratified wavy flow in pipeline. For the gas-liquid interactions, Watson's (1989) combined momentum balance equation derivation was applied. However, the calculation procedure was reversed, and the wave celerity was assumed as an input, while interfacial friction factor was one of the model's outputs. The liquid-liquid interactions were modeled using a simple energy balance equation and shift in liquid phase center of gravity calculations. The liquid phases can be separated, partially mixed, or fully mixed. The bottom aqueous film velocity was calculated using the law of the wall formulation, and was used to calculate the flowing aqueous phase fraction.The model predictions of different flow characteristics for two and/or three-phase flows were compared with available experimental data. The pressure gradient, wave amplitude, and aqueous phase fraction predictions were in good agreement with the experimental data. However, the liquid holdup predictions were slightly under-predicted by the model. Overall, an acceptable agreement was observed for all cases.Most of the common multiphase stratified flow models are developed with the assumption of steady-state conditions and with constant interfacial friction factor value. This study proposes a novel method to model stratified flow. The predictions are in acceptable agreement with experimental data conducted under stratified wavy flow pattern conditions.  相似文献   

18.
The methods normally employed for shear rate calculations from concentric cylinder viscometer data generally are not applicable for fluids with a yield stress. In cylindrical systems with large radius ratios, as usually is the case with suspensions, the yield stress induces two possible flow regimes in the annulus. Unless the yield value is exceeded everywhere in the gap only part of the fluid can be sheared while the remaining region behaves like a solid plug. A correct calculation of the shear rate must take into account the presence of a variable effective gap width determined by the extent of the sheared layer. For time-independent yield stress fluids, a two-step procedure, which does not require any specific flow model, is proposed for analysing the experimental torque-speed data. Under the partially sheared condition, the shear rate can be computed exactly, whereas for the fully sheared flow the Krieger and Elrod approximation is satisfactory. The method is assessed by examining both semi-ideal data generated with a Casson fluid with known properties, and experimental data with an industrial suspension. A more complicated problem associated with characterization of time-dependent yield stress fluids is also identified and discussed. An approximate procedure is used to illustrate the dependence of the shear rate on time of shear in constant-speed experiments.  相似文献   

19.
Analytical flow models are frequently applied when describing constricted channel flow at low and moderate Reynolds numbers. A common assumption underlying such flow models is two-dimensional or axi-symmetrical flow. In this work, two analytical model approaches are formulated in order to overcome this assumption in the case of naturally occurring channel flows for which the assumption might be critiqued. Advantages and flaws of both model approaches are discussed and their outcome is compared with experimental data.  相似文献   

20.
I. D. Boyd 《Shock Waves》1991,1(3):169-176
Computations are presented for the relaxation zone behind strong, one-dimensional shock waves in nitrogen. The analysis is performed with the direct simulation Monte Carlo method (DSMC). The DSMC code is vectorized for efficient use on a supercomputer. The code simulates translational, rotational and vibrational energy exchange and dissociative and recombinative chemical reactions. A new model is proposed for the treatment of three body recombination collisions in the DSMC technique which usually simulates binary collision events. The new model represents improvement over previous models in that it can be employed with a large range of chemical rate data, does not introduce into the flow field troublesome pairs of atoms which may recombine upon further collision (pseudo-particles) and is compatible with the vectorized code. The computational results are compared with existing experimental data. It is shown that the derivation of chemical rate coefficients must account for the degree of vibrational nonequilibrium in the flow. A nonequilibrium chemistry model is employed together with equilibrium rate data to compute successfully the flow in several different nitrogen shock waves.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号