首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
In the present study, the cell attachment/spreading behaviour of L929 mouse fibroblasts on chitosan membranes was evaluated by using physico-chemical properties. For this purpose chitosan membranes were prepared and then photochemically modified with the cell adhesive peptide RGDS (Arg-Gly-Asp-Ser). The physico-chemical properties of unmodified (CHI) and RGDS-modified chitosan (CHI-RGDS) membranes were evaluated by calculating surface free energy (γsv) and interfacial free energy (γsw) values using captive bubble contact angle measurements and harmonic mean equation. The cell attachment experiments were performed both in 10% FBS containing and serum-free media with CHI and CHI-RGDS membranes. Eventually, it was not possible to predict a direct relationship between the change in physico-chemical properties and L929 cell attachment behaviour. The experimental results obtained from cell attachment agree with the theoretical prediction for the free energy of adhesion except for the cell attachment on CHI membrane in serum-free medium. Although a negative interfacial free energy of adhesion was calculated for CHI membrane in serum-free medium (ΔFadh = −2.19 ergs/cm2), the cell attachment was poor (70%) compared to CHI-RGDS (90%) and none of the cells were spread on CHI surface to gain a fibroblastic morphology. Negative energy of adhesion was calculated for CHI and CHI-RGDS in 10% FBS medium, in which 100% of cells were attached on the membranes correlating with the thermodynamic approach. It can be suggested that, adsorption of serum proteins strongly affected the cell attachment meanwhile the presence of biosignal RGDS molecules triggered the cell spreading in serum medium.  相似文献   

2.
Research on Chemical Intermediates - The electrical conductivity of biodegradable polymeric scaffolds has shown promising results in tissue engineering, particularly for electrically excitable...  相似文献   

3.
Several methods are being used with considerable advantage as alternatives to the Draize test, although some technical difficulties still persist. This work compared the sensitivity of HeLa and NCTC L 929 cells to evaluate the cytotoxicity of shampoos used by adults and children (undiluted and diluted to 25, 5, 1, and 0.1%), and eye drops and their containers and surfactants (diluted to 30, 10, 1, and 0.1%). Nondiluted adult shampoos and their 25 and 5% dilutions were cytotoxic for both cell lines. When diluted to 1%, only one of the shampoos was noncytotoxic, whereas among those diluted to 0.1%, only one was cytotoxic. Children's shampoos were cytotoxic when not diluted or diluted to 25%. From those diluted to 5%, only one was noncytotoxic for both cell lines. The cytotoxic tests showed that the eye drops and their containers were noncytotoxic. Surfactants were cytotoxic when diluted to 30 and 10% and noncytotoxic when diluted to 1 and 0.1%. An excellent correlation (r = 0.95) was demonstrated between the sensitivity of the HeLa and NCTC L929 cells in the evaluation of cytotoxicity reactions.  相似文献   

4.
Short-term hydrolytic and enzymatic degradation of poly(ε-caprolactone) (PCL), one series of triblock (PCL/PEO/PCL) and the other of diblock (PCL/PEO) copolymers, with a low content of hydrophilic PEO segments is presented. The effect of the introduction of PEO as the central or lateral segment in the PCL chain on copolymer hydrolysis and biodegradation properties was investigated. FTIR results revealed higher hydrolytic degradation susceptibility of diblock copolymers due to a higher hydrophilicity compared to PCL and triblock copolymers. Enzymatic degradation was tested using cell-free extracts of Pseudomonas aeruginosa PAO1, for two weeks by following the weight loss, changes in surface roughness, and changes in carbonyl and crystallinity index. The results confirmed that all samples underwent enzymatic degradation through surface erosion which was accompanied with a decrease in molecular weights. Diblock copolymers showed significantly higher weight loss and decrease in molecular weight in comparison to PCL itself and triblock copolymers. AFM analysis confirmed significant surface erosion and increase in RMS values. In addition, biodegradation of polymer films was tested in compost model system at 37 °C, where an effective degradation of block copolymers was observed.  相似文献   

5.
The crystallization behavior of poly(e-caprolactone)/poly(ethylene glycol) (PCL/PEG) blend was investigated by differential scanning calorimetry (DSC) and polarized microscopy (POM). Individual phase transition peaks in the DSC curves for both PEG and PCL in all the polymer blends with different PCL contents were observed. The crystallization and melting peak temperatures of PEG were at 41 and 65°C, respectively; while the crystallization and melting temperatures of PCL located at 28 and 56°C, respectively. In-situ POM results demonstrated that spherulites crystalline morphology was formed for both PCL and PEG homopolymers. In PEG/PCL blend, however, both the phase separation morphology and spherulitic morphology can be observed. In blends with 30 or 50 wt % PCL, the PCL component formed dispersed phase and crystallized at lower temperature. However, in blends with 70% PCL, the phase inversion behavior occurred. The continuous PCL phase crystallized at 35°C, while the PEG dispersed phase crystallized at a lower temperature. Fractional crystallization behavior of PEG and PCL was controlled by temperature. The spherulites growth rate of PEG was greatly influenced by temperature, instead of the content of PCL component in the PCL/PEG blends.  相似文献   

6.
The effect of solvent permittivity on the fibre morphology of PCL electrospun membranes for tissue engineering applications is studied. Morphological results indicate that polar solvents with higher permittivity are able to promote the formation of sub-micrometric fibres, while apolar solvents yield microfibres with an average fibre diameter of 2.86 ± 0.31 μm. Polymer/solvent interactions and electrospinning process parameters influence the mechanism of fibre and bead formation. It is shown that the dielectric properties of solvents influence the fibre size scale and crystallinity and directly contribute to the biological response of stem cells. Solvent permittivity is a key factor in controlling the morphological and physical properties of electrospun fibre meshes.  相似文献   

7.
Microporous Nylon-66 polymeric membranes were prepared by immersion-precipitation from a ternary system, water/formic acid/Nylon 66. Depending upon the precipitation conditions, membranes with morphologies that reflect the sequence of liquid-liquid demixing (as characterized by cellular pores) and crystallization (as characterized by crystal particles) events during the course of precipitation were obtained. The details of the membrane morphologies were disclosed using a low voltage field emission scanning electron microscope (FESEM) at very high resolutions. In particular, nano-scale fine structures such as dendritic crystal elements, nano-pores, nano-grains, branching lamellae, etc., which were rarely presented in the membrane literature. Wide angle X-ray diffraction analyses indicated that Nylon-66 crystallized into ‘α’ structure in all prepared membranes. Crystallinities were determined by appropriate deconvolution of the diffraction peaks. The results indicated that membranes prepared by a well-dissolved casting dope had a somewhat higher crystallinity than those prepared by incipient dopes being in metastable states with respect to crystallization. This observation was confirmed by Fourier transform infrared spectroscopy and DSC thermo analyses.  相似文献   

8.
This paper reports proton and methanol transport behavior of composite membranes prepared for use in the direct methanol fuel cell (DMFC). The composite membranes were prepared by embedding various proportions (10–30 wt.%) of inorganic proton conducting material (tungstophosphoric acid (TPA)/MCM-41) into sulfonated poly(ether ether ketone) (SPEEK) polymer matrix. The results indicate that the proton conductivity of the membranes increases with increasing loading of solid proton conducting material. The highest conductivity value of 2.75 mS/cm was obtained for the SPEEK composite membrane containing 30 wt.% solid proton conducting material (50 wt.% TPA in MCM-41). The methanol permeability and crossover flux were also found to increase with increasing loading of the solid proton conducting material. Lowest permeability value of 5.7 × 10−9 cm2 s−1 was obtained for composite membrane with 10 wt.% of the solid proton conducting material (40 wt.% TPA in MCM-41). However, all the composite membranes showed higher selectivity (ratio between the proton conductivity and the methanol permeability) compared to the pure SPEEK membrane. In addition, the membranes are thermally stable up to 160 °C. Thus, these membranes have potential to be considered for use in direct methanol fuel cell.  相似文献   

9.
A sample containing different regions with poly(ε-caprolactone)(PCL), oriented polyethylene (PE), and oriented isotactic polypropylene (iPP) films in contact with glass slide has been prepared to be observed in the same view field in an optical microscope and the crystallization of PCL in different regions during cooling from 80 °C down to room temperature at a rate of 1 °C·min^-1 was studied. The results showed that the crystallization of PCL started first at the PE surface and then at the iPP surface, while its bulk crystallization occured much later. This indicates that though both PE and iPP are active in nucleating PCL, the nucleation ability of PE is stronger than that of iPP. This was due to a better lattice matching between PCL and PE than that between PCL and iPP. Moreover, since lattice matching existed between every (hk0) lattice planes of both PCL and PE but only between the (100)PCL and (010)iPP lattice planes, the uniaxial orientation feature of the used PE and iPP films resulted in the existence of much more active nucleation sites of PCL on PE than on iPP. This led to the fact that the nucleation density of PCL at PE surface was so high that the crystallization of PCL at PE surface took place in a way like the film developing process with PCL microcrystallites happened everywhere with crystallization proceeding simultaneously. On the other hand, even though iPP also enhanced the nucleation density of PCL evidently, the crystallization of PCL at iPP surface included still a nucleation and crystal growth processes similar to that of its bulk crystallization.  相似文献   

10.
Smart zwitterionic membranes with on/off behavior for protein transport   总被引:1,自引:0,他引:1  
Poly(acrylonitrile) (PAN)-based zwitterionic membranes, composed of PAN and poly( N, N-dimethyl- N-methacryloxyethyl- N-(3-sulfopropyl) copolymer, are electrolyte-sensitive smart membranes. The hydrophilicity was increased and protein adsorption was remarkably decreased for the membranes in response to environmental stimuli. FTIR spectroscopic analysis directly provided molecular-level observation of the enhanced dissociation and hydration of zwitterionic sulfobetaine dipoles at higher electrolyte concentrations. The smart PAN-based zwitterionic membranes can close or open channels for protein transport under different NaCl concentrations. The electrolyte-sensitive switch of on/off behavior for protein transport is reversible.  相似文献   

11.
This paper is concerned with the temperature dependence of mechanical properties of ultradrawn polyethylene in terms of storage modulus E' and loss factor tan by the measurement of the complex dynamic tensile modulus over ranges of temperature from 20 to 140 C. Interestingly, E' of a specimen with drawn ratio of 300 is about 120 GPa at 140 C, when the measurement is carried out at a frequency of 100 Hz. This is a very high value. In addition, the drawn specimens were irradiated to try to produce ultra-drawn polyethylene films with more excellent mechanical and thermal properties. However, the melting peak shifts to a lower temperature with increasing radiation dose. This result is probably attributed to the considerably radiation-induced scission of extended chains constructing crystals.  相似文献   

12.
Journal of Thermal Analysis and Calorimetry - Buckwheat starch is an alternative source to supply the high global demand for starch. The properties of starch can be modified through chemical and...  相似文献   

13.
Pseudomonas aeruginosa, when cultured under the appropriate conditions, secretes rhamnolipids to the external medium. These glycolipids constitute one of the most interesting classes of biosurfactants so far. A dirhamnolipid fraction was isolated and purified from the crude biosurfactant, and its action on model and biological membranes was studied. Dirhamnolipid induced leakage of internal contents, as measured by the release of carboxyfluorescein, in phosphatidylcholine unilamellar vesicles, at concentrations below its CMC. Membrane solubilization was not observed within this concentration range. The presence of inverted cone-shaped lipids in the membrane, namely lysophosphatidylcholine, accelerated leakage, whereas cone-shaped lipids, like phosphatidylethanolamine, decreased leakage rate. Increasing concentrations of cholesterol protected the membrane against dirhamnolipid-induced leakage, which was totally abolished by the presence of 50 mol% of the sterol. Dirhamnolipid caused hemolysis of human erythrocytes through a lytic mechanism, as shown by the similar rates of K+ and hemoglobin leakage, and by the absence of effect of osmotic protectants. Scanning electron microscopy showed that the addition of the biosurfactant changed the usual disc shape of erythrocytes into that of spheroechinocytes. The results are discussed within the frame of the biological actions of dirhamnolipid, and the possible future applications of this biosurfactant.  相似文献   

14.
《先进技术聚合物》2018,29(1):451-462
Scaffold, an essential element of tissue engineering, should provide proper physical and chemical properties and evolve suitable cell behavior for tissue regeneration. Polycaprolactone/Gelatin (PCL/Gel)‐based nanocomposite scaffolds containing hydroxyapatite nanoparticles (nHA) and vitamin D3 (Vit D3) were fabricated using the electrospinning method. Structural and mechanical properties of the scaffold were determined by scanning electron microscopy (SEM) and tensile measurement. In this study, smooth and bead‐free morphology with a uniform fiber diameter and optimal porosity level with appropriate pore size was observed for PCL/Gel/nHA nanocomposite scaffold. The results indicated that adding nHA to PCL/Gel caused an increase of the mechanical properties of scaffold. In addition, chemical interactions between PCL, gelatin, and nHA molecules were shown with XRD and FT‐IR in the composite scaffolds. MG‐63 cell line has been cultured on the fabricated composite scaffolds; the results of viability and adhesion of cells on the scaffolds have been confirmed using MTT and SEM analysis methods. Here in this study, the culture of the osteoblast cells on the scaffolds showed that the addition of Vit D3 to PCL/Gel/nHA scaffold caused further attachment and proliferation of the cells. Moreover, DAPI staining results showed that the presence and viability of the cells were greater in PCL/Gel/nHA/Vit D3 scaffold than in PCL/Gel/nHA and PCL/Gel scaffolds. The results also approved increasing cell proliferation and alkaline phosphatase (ALP) activity for MG‐63 cells cultured on PCL/Gel/nHA/Vit D3 scaffold. The results indicated superior properties of hydroxyapatite nanoparticles and vitamin D3 incorporated in PCL/Gel scaffold for use in bone tissue engineering.  相似文献   

15.
Low-density polyethylene/plasticized starch/polycaprolactone blends were processed by conventional extrusion, injection molding, and film blowing techniques. The glass transition temperatures of plasticized starch were determined using differential scanning calorimetry. The blends were characterized by mechanical property measurements and scanning electron microscopy. The blend properties were found to depend not only on composition but also on the generated morphology. In films the fine dispersion of polycaprolactone phase in the polyethylene/starch matrix resulted in mechanical property increase, while in injection specimens there was property decrease due to phase coalescence. It appears that the different conditions existing at the two different shaping processes i.e. film blowing and injection molding could account for the final obtained morphology.  相似文献   

16.
Poly(caprolactone) (PCL) is one of biodegradable and biocompatible polymers, which have received significant attention because they are environmentally friendly and are extensively used in biomedical applications. Electrospinning was a straightforward method to produce nanofibers from polymer solutions in a wide submicron range around 100 nm. However, no clear standard had been established for judging whether a solvent of high solubility for a polymer would produce a solution good for electrospinning. Considering the above-mentioned cause, we explored the effect of solvent on fibrous morphology, FT–IR spectra and 1H NMR spectra, viscosity and shearing strength, differential scanning calorimetry (DSC) of PCL electrospun nonwoven membranes in this article. When NMP and AC were used as the solvent for PCL electrospinning, all of them were composed of smooth and nanosized fibers with similar fiber surface morphologies. Meanwhile, when DCM and CF were used as solvent, there were lots of holes in fibers due to high evaporation. The electrospinnability was good when CA was chosen as solvent due to its lowest viscosity.  相似文献   

17.
We report the measurement of the zinc and cadmium plasma parameters produced by the fundamental, second, and third harmonics of the neodymium-doped yttrium aluminium garnet laser. The excitation temperature has been determined from the Boltzmann plot method, whereas the electron number density is estimated from the Stark broadened profile of several spectral lines. The temporal evolution of the plasma has also been investigated. Besides, we present experimental relative transition probabilities of the Zn (4s5s 3S1 → 4s4p 3P0,1,2) and Cd (5s6s 3S1 → 5s5p 3P0,1,2) triplets and compare our data with that listed in the National Institute of Standards and Technology database. The experiments have been performed in air but also in He, Ne and Ar atmosphere to study the effects of ambient gas environment on the emission intensity of the atomic and ionic lines and on the plasma parameters.  相似文献   

18.
Cellulose crystallinity assessment is important for optimizing the yield of cellulose products, such as bioethanol. X-ray diffraction is often used for this purpose for its perceived robustness and availability. In this work, the five most common analysis methods (the Segal peak height method and those based on peak fitting and/or amorphous standards) are critically reviewed and compared to two-dimensional Rietveld refinement. A larger (\(n=16\)) and more varied collection of samples than previous studies have presented is used. In particular, samples (\(n=6\)) with low crystallinity and small crystallite sizes are included. A good linear correlation (\(r^{2} \ge 0.90\)) between the five most common methods suggests that they agree on large-scale crystallinity differences between samples. For small crystallinity differences, however, correlation was not seen for samples that were from distinct sample sets. The least-squares fitting using an amorphous standard shows the smallest crystallite size dependence and this method combined with perpendicular transmission geometry also yielded values closest to independently obtained cellulose crystallinity values. On the other hand, these values are too low according to the Rietveld refinement. All analysis methods have weaknesses that should be considered when assessing differences in sample crystallinity.  相似文献   

19.
蔡东海  刘欢  江雷 《化学通报》2014,77(8):743-751
自然界存在许多具有各向异性表面结构的生物,其表面表现出典型的对液体操控的方向性的差异。近年来,这种表面微结构的构筑引起了广泛的研究兴趣,已成为一个热点研究方向。天然的各向异性浸润表面是由复杂的异质微纳米结构组成,基于基础研究和应用推广的目的,可以将其简化为一些有序的方向性结构表面。本文介绍了现在应用广泛的几种各向异性微纳米分级结构的构筑方法,并对比分析其可行性。同时,文中还深入讨论了各向异性微纳米分级结构表面对于液体行为的调控。这种各向异性微纳米分级结构表面在微流体运输、微流控芯片等领域将有重要应用,也会对生命科学(比如生物芯片和重大疾病的早期诊断)、能源(比如电极材料的可控制备)和环境(比如污染物的分离及定向转化)等研究做出巨大的贡献。  相似文献   

20.
近二十多年来,如何从天然纤维素中分离微/纳纤丝和用其来增强高分子聚合物受到许多学者的关注。本研究以杨木纤维素为原料,采用硫酸和盐酸的混合液水解、恒温水浴振荡处理制备杨木微/纳纤丝。利用扫描电子显微和X射线衍射仪对制备的杨木微/纳纤丝进行分析表征,结果表明当酸处理条件为杨木纤维3g、浓H2SO4体积分数为15%、浓HCl体积分数为5%、恒温水浴60℃、振荡8h,可得到杨木微/纳纤丝,杨木微/纳纤丝宽度分布在200nm到1μm之间,长宽比约60~120,相度结晶度为77.59%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号