首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular composition of soil organic matter (SOM) in three agricultural fields under different managements, was evaluated by off-line thermochemolysis followed by gas chromatography mass spectrometry analysis (THM-GC-MS). While this technique enabled the characterization of SOM components in coarse textured soil, its efficiency in heavy textured soils was seriously affected by the interference of clay minerals, which catalyzed the formation of secondary artifacts in pyrolysates. Soil demineralization with hydrofluoric acid (HF) solutions effectively improved the reliable characterization of organic compounds in clayey soils by thermochemolysis, while did not alter significantly the results of coarse textured soil. A wide range of lignin monomers and lipids molecules, of plant and microbial origin, were identified in the pyrograms of HF treated soils, thereby revealing interesting molecular differences between SOM management practices. Our results indicated that clay removal provided by HF pretreatment enhanced the capacity of thermochemolysis to be a valuable and accurate technique to study the SOM dynamics also in heavy-textured and OC-depleted cultivated soils.  相似文献   

2.
The severe heating of soil during wildfires and prescribed burns may result in adverse effects on soil fertility due to organic matter loss. No rapid and reliable procedure exists to evaluate soil organic matter (SOM) losses due to heating. Enthalpy of SOM combustion correlates with organic matter content. Quartz is a ubiquitous mineral in soils and has a remarkably constant composition and reversible α–β phase transition at 575 °C. We suggest that SOM content in heated and unheated soils can be compared using the ratio of SOM combustion enthalpy on heating to the β–α quartz transition enthalpy measured on cooling of the same sample. This eliminates the need to dry and weigh the samples, making possible field applications of the proposed method. The feasibility of using the (ΔH comb SOM)/(ΔH β–α Qz) ratio was established with experiments on soil samples heated in the laboratory and the method was then used for evaluation of SOM loss on two pile burn sites at UC Berkeley’s Blodgett Forest Research Station in Georgetown, California.  相似文献   

3.
The composition and molecular residence time of soil organic matter (SOM) in four particle‐size fractions (POM >200 µm, POM 63–200 µm, silt and clay) were determined using Curie‐point pyrolysis/gas chromatography coupled on‐line to mass spectrometry. The fractions were isolated from soils, either continuously with a C3 wheat (soil 13C value = ?26.4‰), or transferred to a C4 maize (soil 13C value = ?20.2‰) cropping system 23 years ago. Pyrograms contained up to 45 different pyrolysis peaks; 37 (ca. 85%) were identifiable compounds. Lignins and carbohydrates dominated the POM fractions, proteins were abundant, but lignin was (nearly) absent in the silt and clay fractions. The mean turnover time (MRT) for the pyrolysis products in particulate organic matter (POM) was generally <15 years (fast C pool) and 20–300 years (medium or slow C pools) in silt and clay fractions. Methylcyclopentenone (carbohydrate) in the clay fraction and benzene (mixed source) in the silt fraction exhibited the longest MRTs, 297 and 159 years, respectively. Plant‐derived organic matter was not stored in soils, but was transformed to microbial remains, mainly in the form of carbohydrates and proteins and held in soil by organo‐mineral interactions. Selective preservation of plant‐derived OM (i.e. lignin) based on chemical recalcitrance was not observed in these arable soils. Association/presence of C with silt or clays in soils clearly increased MRT values, but in an as yet unresolved manner (i.e. ‘truly’ stabilized, or potentially still ‘labile’ but just not accessible C). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Understanding the fate of dung carbon (C) in soils is challenging due to the ubiquitous presence of the plant‐derived organic matter (OM), the source material from which both dung‐derived OM and soil organic matter (SOM) predominantly originate. A better understanding of the fate of specific components of this substantial source of OM, and thereby its contribution to C cycling in terrestrial ecosystems, can only be achieved through the use of labelled dung treatments. In this short review, we consider analytical approaches using bulk and compound‐specific stable carbon isotope analysis that have been utilised to explore the fate of dung‐derived C in soils. Bulk stable carbon isotope analyses are now used routinely to explore OM matter cycling in soils, and have shown that up to 20% of applied dung C may be incorporated into the surface soil horizons several weeks after application, with up to 8% remaining in the soil profile after one year. However, whole soil δ13C values represent the average of a wide range of organic components with varying δ13C values and mean residence times in soils. Several stable 13C isotope ratio mass spectrometric methods have been developed to qualify and quantify different fractions of OM in soils and other complex matrices. In particular, thermogravimetry‐differential scanning calorimetry‐isotope ratio mass spectrometry (TG‐DSC‐IRMS) and gas chromatography‐combustion‐IRMS (GC‐C‐IRMS) analyses have been applied to determine the incorporation and turnover of polymeric plant cell wall materials from C4 dung into C3 grassland soils using natural abundance 13C isotope labelling. Both approaches showed that fluxes of C derived from polysaccharides, i.e. as cellulose or monosaccharide components, were more similar to the behaviour of bulk dung C in soil than lignin. However, lignin and its 4‐hydroxypropanoid monomers were unexpectedly dynamic in soil. These findings provide further evidence for emerging themes in biogeochemical investigations of soil OM dynamics that challenge perceived concepts of recalcitrance of C pools in soils, which may have profound implications for the assessment of the potential of agricultural soils to influence terrestrial C sinks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Soils of high latitudes store approximately one-third of the global soil carbon pool. Decomposition of soil organic matter (SOM) is expected to increase in response to global warming, which is most pronounced in northern latitudes. It is, however, unclear if microorganisms are able to utilize more stable, recalcitrant C pools, when labile soil carbon pools will be depleted due to increasing temperatures. Here we report on an incubation experiment with intact soil cores of a frost-boil tundra ecosystem at three different temperatures (2 degrees C, 12 degrees C and 24 degrees C). In order to assess which fractions of the SOM are available for decomposition at various temperatures, we analyzed the isotopic signature of respired CO2 and of different SOM fractions. The delta13C values of CO2 respired were negatively correlated with temperature, indicating the utilization of SOM fractions that were depleted in 13C at higher temperatures. Chemical fractionation of SOM showed that the water-soluble fraction (presumably the most easily available substrates for microbial respiration) was most enriched in 13C, while the acid-insoluble pool (recalcitrant substrates) was most depleted in 13C. Our results therefore suggest that, at higher temperatures, recalcitrant compounds are preferentially respired by arctic microbes. When the isotopic signatures of respired CO2 of soils which had been incubated at 24 degrees C were measured at 12 degrees C, the delta13C values shifted to values found in soils incubated at 12 degrees C, indicating the reversible use of more easily available substrates. Analysis of phospholipid fatty acid profiles showed significant differences in microbial community structure at various incubation temperatures indicating that microorganisms with preference for more recalcitrant compounds establish as temperatures increase. In summary our results demonstrate that a large portion of tundra SOM is potentially mineralizable.  相似文献   

6.
CuO oxidation is traditionally used for soil lignin study, although, like other degradation methods it might give access only to a part of the lignin polymers. For structural characterization, lignins are conventionally isolated from plant material by combining ball-milling, cellulolysis and solvent extraction to recover a milled wall enzymatic lignin (MWEL) fraction. This method might isolate condensed lignins, which are not accounted for CuO oxidation. MWELs are still associated with polysaccharides. This study aimed to evaluate if the MWEL method can be used complementary to CuO oxidation for soil lignin studies. We assessed the purity of isolated lignins by pyrolytic characterization of MWEL as well as the efficiency of the isolation method by characterization of the MWEL-free residues. MWELs isolated from maize stems and leaves and soil were primarily composed of lignin units, with few associated polysaccharides. MWELs isolated from soils were more degraded and contained less polysaccharides than MWEL from maize tissues. Fewer lignin-derived pyrolysis products were detected in the soil residue compared to the residues obtained from plant tissues. The MWEL method appeared very efficient in isolating relatively pure lignins from soil, most probably because the lignin–polysaccharide complex is less intact than in plants.  相似文献   

7.
Soil organic matter (SOM) transformations caused by heating were analyzed using the stable carbon isotope (13)C as a tracer to follow C mineralization dynamics and C transfers between different organic compartments. A (13)C-labelled soil, obtained by incorporation of (13)C-enriched Lolium perenne phytomass into a pine forest soil, was heated for 10 min at 385 degrees C to reproduce conditions typical of a forest fire and changes in total C content, potential C mineralization activity and C distribution between the different soil organic fractions were determined. Changes caused by heating on the potential soil C mineralization, determined by laboratory aerobic incubation, reveal alterations to the SOM biodegradability; some stabilized SOM showed an increase in biodegradability, whereas less stabilized SOM became more resistant to microorganisms. Chemical fractionations of SOM allowed us to monitor changes in its composition. As a consequence of heating, the less polymerized humic fractions were the most strongly affected, with the total disappearance of fulvic acids. A significant increase in the quantity and degree of polymerization of the humic acids at the expense of other more (13)C-enriched substances was also found. Finally, a large decrease in humin was observed, its solubilizable part disappearing completely, probably as a consequence of the incorporation of the byproducts into the free organic matter fraction.  相似文献   

8.
Variations in (13)C natural abundance and distribution of total C among five size and density fractions of soil organic matter, water soluble organic C (WSOC) and microbial biomass C (MBC) were investigated in the upper layer (0-20 cm) of a continuous grassland soil (CG, C(3) vegetation), a C(3)-humus soil converted to continuous maize cultivation (CM, C(4) vegetation) and a C(3)-humus soil converted to a rotation of maize cultivation and grassland (R). The amounts of WSOC and MBC were both significantly larger in the CG than in the CM and the R. In the three soils, WSOC was depleted while MBC was enriched in (13)C as compared with whole soil C. The relative contributions to the total C content of C stored in the macro-organic matter and in the size fraction 50-150 microm decreased with decreasing total C contents in the order CG > R > CM, while the relative contribution of C associated with the clay- and silt-sized fraction <50 microm increased. This reflects a greater stability and physical protection against microbial degradation associated with soil disruption (tillage) of the clay- and silt-associated organic C, in relation to the organic C in larger size fractions. The size and density fractions from the CG soil showed significant differences in (13)C enrichment, indicating different degrees of microbial degradation and stability of soil organic C associated with physically different soil organic matter (SOM) fractions. Delta(13)C analysis of the size and density fractions from CM and R soils reflected a decreasing turnover rate of soil organic C with increasing density among the macro-organic matter fractions and with decreasing particle size.  相似文献   

9.
The degraded Eucalyptus pellita kraft lignin from the black liquor of KP-AQ pulping was precipitated directly at pH ∼2.0 without further purifying, since the lignin obtained is more representative with a whole distribution of molecular weight. The precipitated lignin was fractionated into six fractions by successive extraction with organic solvents. A comparison study of the lignin heterogeneity between the fractions was made in terms of fractional yield, content of associated polysaccharides, alkaline nitrobenzene oxidation, molecular weight distribution, 1H NMR and 13C NMR spectroscopy and thermal stability. It was found that the lignin fractions contained higher associated hemicelluloses and ratios of non-condensed syringyl/guaiacyl units which were extracted by organic solvents with higher Hildebrand solubility parameters. The results from GPC and TGA showed that the polydispersity and the thermal stability of the lignin fractions increased with increasing molecular weight. In the low molecular weight fraction, small amounts of β-aryl ether bond (β-O-4) surviving the KP-AQ pulping were detected by both 1H and 13C NMR spectra.  相似文献   

10.
Off-line pyrolysis was used to liberate lignin moieties from dung and soil and, after trimethylsilylation, the delta(13)C values of these derivatives were determined by gas chromatography-combustion-isotope ratio mass spectrometry. Initial delta(13)C values determined for 4-vinylphenol, syringol, 4-vinylguaiacol, 4-acetylsyringol, 4-vinylsyringol, 4-(2-Z-propenyl)syringol, 4-(2-E-propenyl)syringol and 4-(2-propenone)syringol pyrolysis products of the lignin polyphenol structure from C(4) (delta(13)C(bulk) = -12.6%) and C(3) (delta(13)C(bulk) = -30.1 per thousand) dung confirmed the robust and reproducible nature of the off-line preparation technique. C(4) dung was used as a treatment in a randomised field experiment to assess the short-term sequestration of dung carbon in managed grasslands. Since lignin was on average 3.5 per thousand depleted in (13)C compared with bulk dung delta(13)C values, this may have resulted in an under-estimation of dung C incorporation based on bulk delta(13)C values. Therefore, an investigation of the compound-specific delta(13)C values of dung-derived lignin moieties extracted from soils sampled up to 372 days was undertaken. Delta(13)C values between lignin moieties extracted from treated and untreated soils showed that dung-derived lignin was not especially resistant to degradation and suggested that individual moieties of the lignin macromolecule must: (i) move into soil, (ii) be degraded, or (iii) be transformed diagenetically at different rates. This adds to a gathering body of evidence that lignin is not particularly stable in soils, which has considerable significance for the perceived role of different biochemical components in the cycling of C in soils.  相似文献   

11.
Physical protection is one of the most important ways for stabilization of organic carbon in soils, and in order to properly manage soils as a sink for carbon, it is necessary to know how much organic carbon a given soil could protect and to have information on the molecular composition of this protected organic matter in soil. To this end, we studied individual horizons taken from a soil profile under Quercus rotundifolia stands over calcareous parent material. Horizons were subjected to a sequential extraction using solutions of sodium polytungstate (NaPT) of increasing density (1.6, 1.8 and 2.0) to differentiate five fractions: a free light, extractable without sonication, three occluded (extractable by sonication) and a dense (retained in the dense residue, after sonication). The obtained fractions were analyzed by preparative thermochemolysis followed by gas chromatography–mass spectrometry (GC/MS) in order to get some insight on the molecular composition. The total ion chromatograms obtained for the pyrolysates of both of the densimetric fractions show various series of fatty acids (as their methyl esters), n-alkanols (as their methyl ethers), methylated α,ω-diacids, methylated ω-hydroxyacids, various lignous subunits and permethylated deoxy aldonic acids derived from carbohydrates. The comparison of the distributions of the thermochemolysis products shows that organic carbon in the dense fractions of the deepest horizons were more influenced by a microbial reworking than the others dense fractions from the upper horizons. It is also the case for the occluded fraction 1 of the H horizon even the vegetal part of the organic carbon in that occluded fraction appears to have a non-woody origin. On the other hand, the dense fraction of the H horizon is strongly marked by vegetal origin.  相似文献   

12.
The DSC technique was used to characterise under laboratory conditions, the effect of a polymer substance, Firesorb, that tries to be used as a flame retardant in forest fires, over two different Galician soils (NW Spain). Samples of these soils with different doses of this retardant were heated in an oven at 230 and 350°C to simulate medium and high intensity fires, respectively. The effect of the retardant was determined as a result of the comparison between the enthalpy of combustion of the organic matter and the ignition temperature of these subsamples and the corresponding unheated and untreated ones. Both parameters, enthalpy of combustion and ignition temperature, were determined directly from the DSC experiments. The results showed that the effect of the retardant remains clear in heating at 230°C and the content of organic matter of the soil was a determining factor in its quantification. However the effect of the retardant in heating at high temperatures is almost null in both soils.  相似文献   

13.
The conversion of grassland into cultivated land is a common agricultural practice, generally leading to the decrease of the soil organic matter (SOM) content. In this study, we analysed quantitative changes in carbon content. Additionally qualitative changes occurring in the soil organic matter composition on a molecular basis were assessed using Curiepoint pyrolysis coupled to gas chromatography and mass spectrometry (pyrolysis GC/MS). The aim of the study was to follow the development of SOM in grassland soil, after conversion into arable soil.Soil was sampled before the conversion (0 month) as well as 3 months, and 1 year after the conversion. The samples were treated with 10% HF to remove mineral material before being subjected to analysis of the bulk chemical composition by pyrolysis GC/MS. The relative contributions of single molecules were obtained by the integration of the total ion chromatogram.Pyrolysis products derived from lignins, proteins and polysaccharides were identified in all samples. SOM under grassland, arable land and converted grassland released similar pyrolysis products. Three months after the conversion, lignin-derived pyrolysis products were found at lower concentrations in the converted grassland soil. Principal component analysis showed that arable land, grassland and the converted grassland could be distinguished using the score plot of the 2nd and 3rd principal components. The differences induced by grassland conversion are only transitory and 1 year after the conversion, SOM has a similar composition as SOM of the initial grassland soil.  相似文献   

14.
土壤有机质对菲的吸附-解吸平衡的影响   总被引:13,自引:0,他引:13  
以自然土壤和过氧化氢分级土壤为实验模拟样品,测定了菲在这些样品上的吸附一解吸等温线,用线性和Freundlich模型拟合了这些等温线.^13C NMR谱表明,随着土壤有机质腐殖化程度的加深,有机质将含有较多的长链烷烃化合物,含氧、氮化合物有所减少,芳香环的数量变化不大.吸附实验结果表明,土壤有机质含量与菲的吸附容量存在一定的线性相关关系.有机质腐殖质化程度较深的样品比原土壤具有更大的吸附容量,其吸附等温线表现出更为明显的非线性,而且具有更明显的解吸滞后现象.说明土壤中一些结构紧密和含极性官能团较少的有机质是引起菲的非线性吸附过程和解吸滞后现象的主要原因。  相似文献   

15.
Archaeological oak (Quercus sp.) wood samples, ranging from 16(th) C. AD to 6000 BP, were studied using flash pyrolysis-gas chromatography/mass spectrometry to obtain insight into angiosperm lignin degradation. The pyrolysates revealed evidence of a number of 3-methoxy-1,2-benzenediol derivatives, methoxycatechols, directly related to 2,6-dimethoxyphenol, syringyl, moieties which are characteristic building blocks of angiosperm lignin. Mass spectra and mass chromatograms of these compounds are reported. The finding of these characteristic pyrolysis products in well-preserved archaeological wood provides unequivocal evidence that demethylation of syringyl units occurs very early in wood degradation. It is highly likely that the absence of abundant 3-methoxy-1, 2-benzenediols in degrading plant materials containing angiosperm lignin relates to the lability of these newly formed moieties.  相似文献   

16.
The effect of a recent vegetation change (<100 years) from C(4) grassland to C(3) woodland in central Queensland, Australia, on soil organic matter (SOM) composition and SOM dynamics has been investigated using a novel coupled thermogravimetry-differential scanning calorimetry-quadrupole.mass spectrometry-isotope ratio mass spectrometry (TG-DSC-QMS-IRMS) system. TG-DSC-QMS-IRMS distinguishes the C isotope composition of discrete SOM pools, showing changes in labile, recalcitrant and refractory carbon in the bulk soil and particle size fractions which track the vegetation changes. Analysis of evolved gases (by QMS) from thermal decomposition, rather than observed weight loss, proved essential in determining the temperature at which SOM decomposes, because smectite and kaolinite clays contribute to observed weight losses. The delta(13)C analyses of the CO(2) evolved at different temperatures for bulk soil and particle size-separates showed that most of the labile SOM under the more recent woody vegetation was C(3)-derived carbon whereas the delta(13)C values in the recalcitrant SOM showed greater C(4) contributions. This indicated a shift from grass (C(4))- to tree (C(3))-derived carbon in the woodland, which was also supported by the two-phase (13)C enrichment with depth, i.e. C(3) vegetation dominated the top soil (0-10 cm), but the C(4) contribution increased with depth (more gradual). This is perturbed by the inclusion of charcoal from forest fires ((14)C age incursions) and by the deep incorporation of C(3) carbon due to root penetration.  相似文献   

17.
The effects of thermodenuder treatment on the cloud condensation nuclei (CCN) activity and elemental composition of organic particles grown by α-pinene ozonolysis were investigated. The secondary organic material (SOM) was produced in a continuous-flow chamber, with steady-state organic particle mass concentrations M(org) ranging from 1.4 to 37 μg m(-3). Particles exiting in the outflow were heated to temperatures T of up to 100 °C in a thermodenuder. The oxygen-to-carbon (O:C) and hydrogen-to-carbon (H:C) ratios were measured by on-line mass spectrometry. The observed elemental ratios were fit by a linear function, given by (H:C) = -0.8 (O:C) +1.8 for 0.38 < O:C < 0.50. This fit included the dependence on both M(org) and T, meaning that the single variable of post-thermodenuder M(org) was sufficient as an accurate predictor for O:C(M(org)(T)) and H:C(M(org)(T)). This result suggests that equilibrium partitioning theory largely governed the initial volatilization in the thermodenuder. By comparison, the CCN activity had a different dependence on thermodenuder treatment. At 25 °C, the CCN activity was independent of M(org), having an effective hygroscopicity parameter κ(org) of 0.103 ± 0.002. At 100 °C, however, κ(org) varied from 0.105 for M(org) = 1.4 μg m(-3) to 0.079 for M(org) = 37 μg m(-3), indicating that for high mass concentration the CCN activity decreased with heat treatment. The interpretation is that the oligomer fraction of the SOM increased at elevated T, both because of particle-phase reactions that produced oligomers under those conditions and because of the relative enrichment of lower-volatility oligomers in the SOM accompanying the evaporation of higher-volatility monomers from the SOM. Oligomers have high effective molecular weights and thereby significantly influence CCN activity. The production rates of different types of oligomers depend on the types and concentrations of functional groups present in the SOM, which in turn are strongly influenced by M(org). We conclude with a hypothesis, which is supported by a detailed molecular kinetic model, that the changes in κ(org) at high T were more significant at high compared to low M(org) because particle-phase SOM at high M(org) contained a mix of functional groups favorable to oligomerization, such as carbonyl groups.  相似文献   

18.
Some fractions of beer-factory wastewaters represent an important environmental concern owing to their high content of polyphenols and dark-brown color. The capacity of Coriolopsis gallica to preferentially degrade lignin has been successfully applied in our laboratory to the biotreatment and decolorization of paper-industry effluents. In this work, the ability of this white-rot fungus to degrade high-tannin-containing wastewaters is evaluated. Under all the conditions studied, effluent decolorization and chemical oxygen demand reduction achieved by C. gallica at day 12 of incubation were close to 50 and 65%, respectively. No adhesion of dark color to the fungal mycelium was observed suggesting that decolorization could be ascribed to C. gallica degradation systems. Mycelium dry-weight values showed that C. gallica is tolerant to relatively high tannin content present in the effluent samples. In the sample containing the highest effluent concentration (60% v/v), dry-weight values suggested an inhibition of fungal growth at day 6 of incubation and a further adaptation of the fungus to the stressing tannin effect at day 12 of fungal treatment. Pyrolysis/gas chromatography/mass spectrometry results showed a decrease of polyphenols pyrolysis products, mainly phenol and guaiacol, with the incubation time. All these results indicate the potential use of C. gallica in bioremediation of tannin-containing industrial wastewaters and in other applications where a reduction in polyphenols content is required.  相似文献   

19.
Ma L  Xin B  Chen Y 《The Analyst》2012,137(7):1730-1736
The detection of explosives in soil is of great significance in public security programmes and environmental science. In the present work, a ppb-level method was established to directly detect the semi-volatile explosives, RDX and TNT, present in complex soil samples. The method used thermal sampling technique and a direct current atmospheric pressure glow discharge source mounted with a brass cylinder electrode (9 mm × 4.6 mm i.d./5.6 mm o.d.) to face the samples, requiring no sample pretreatment steps such as soil extraction (about ten hours). It was characterized by the merits of easy operation, high sensitivity and fast speed, and has been validated by real soil samples from various locations around a factory or firecracker releasing fields. It took only 5 min per sample, with the limit of detection down to 0.5 ppb (S/N = 3) trinitrohexahydro-1,3,5-triazine in soils heated at 170 °C. It is also extendable to the analysis of other volatile analytes.  相似文献   

20.
Thermal analysis is primarily used in the field of materials science, but has a long history in the geosciences. Soil organic matter (SOM) has received a great deal of recent scientific interest because of its role in the global carbon cycle. Conventional methods of characterizing SOM quality are unsatisfactory because they do not adequately capture the complete quality continuum that SOM comprises or the various mechanisms that act to stabilize it in the soil matrix. Thermal analysis techniques have the potential to capture this quality continuum, but are dependent on numerous experimental conditions that limit the comparability of results among different studies. Published methodology on thermal analysis of soils and sediments has largely focused on the characterization of the mineral component, while the organic component has received little attention. We tested several experimental conditions for their effects on the exothermic region of curves generated by thermal analysis of easily dispersed soil clay fractions and non-protected light-density particulate organic matter fractions isolated from the surface horizon of a forest soil. Results were found to be highly repeatable but strongly sensitive to crucible material, heating rate, and sample amount, and relatively insensitive to the use of a reference material. Thermal analysis is an important addition to the set of analytical tools used to characterize SOM quality because it provides direct, quantitative information of the energy potentially available for microbial metabolism. However, users will need to balance the needs of specific scientific objectives with the need for standardized methods and comparability between studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号