首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesoporous molecular sieves Si-MCM-41 (purely siliceous) and Ti-MCM-41 (partly covered with a surface layer of TiO2) were functionalized with phosphate groups by treatment with POCl3 (denoted -MCM-41(P)and Ti-MCM-41(P), respectively). With the use of TEM, X-ray diffraction, and N2 adsorption, it was shown that the initial hexagonal structure, the high specific surface area, and porosity are retained in the functionalized materials but are not as good as in the starting materials. 1H MAS NMR and 31P MAS NMR revealed that the surface of Si-MCM-41(P) consists of silicon phosphate and pyrophosphate species. That of Ti-MCM-41(P) additionally contains titanium dihydro-, hydro-, and pyrophosphate species, the latter being predominant. TPD of adsorbed ammonia for Si-MCM-41(P) and Ti-MCM-41(P) showed that functionalization leads to the creation of moderate and strong acid sites. A combination of mesoporous structure with acidic properties makes the MCM-41 functionalized with phosphate groups promising for use as solid acid catalysts.  相似文献   

2.
将Pt/Si-MCM-41用于H2选择催化还原(H2-SCR)消除NO的反应. X射线衍射分析、N2吸附/脱附、氢吸附和透射电镜等分析结果表明,介孔Si-MCM-41具有大的比表面积和孔体积有利于活性组分Pt的分散, Pt/Si-MCM-41催化剂在富氧和80000 h-1空速的条件下,其H2-SCR低温活性在100 ℃达到60.1%,优于Pt/Si-ZSM-5和Pt/SiO2催化剂,其选择性在120 可达70%. 当Si-MCM-41的介孔结构被破坏时,H2-SCR反应活性明显下降,最大活性在120 ℃仅为15%. 漫反射红外光谱(DRIFTS)测试表明, —NO3物种是Pt/Si-MCM-41催化剂在H2-SCR反应中的主要中间物种.  相似文献   

3.
Surface immobilization of active species onto mesoporous materials is gaining importance, especially in the design of functionalized mesoporous materials as a nanocatalyst through heterogenization of homogeneous catalytic systems. This article summarizes recent work on the synthesis, characterization and catalytic performance of the functionalized mesoporous catalysts performed by the present authors. A cationic rhenium(I) complex was encapsulated into mesoporous Al-MCM-41 molecular sieve using a ion-exchange method, yielding a new photocatalyst to be active for photocatalytic reduction of CO2. Surface functionalization of mesoporous silica SBA-15 with sulfonic acid groups was investigated to give a solid acid catalyst. The chemically modified Fe-containing mesoporous materials, which are active for hydroxylation of phenol, were prepared by a surface-grafting method that iron salts are immobilized onto mesoporous Si-MCM-41 with the help of 3-aminopropyltrimethoxysilane as a linker. A cobalt(III) complex was heterogenized onto mesoporous silica SBA-15 containing carboxylic groups in order to utilize as a solid catalyst for the liquid-phase oxidation of aromatic hydrocarbons.  相似文献   

4.
This work reports on the synthesis and characterization of NH2-MCM-41, a well-known hybrid material commonly used in biomedical and biotechnological applications, based on mesoporous silica and aminopropyl functionalities. Samples were prepared by post-synthesis grafting and by one-pot co-condensation methods, to achieve a relatively high organic loading (around 12% wt), and were characterized in terms of porosity, thermal stability and distribution of the aminopropyl moieties in the silica framework. The results suggest that grafting brings about an almost complete consumption of surface silanols, with structurally defined functional groups mainly located inside the material pores. In contrast, co-condensation results in lower surface area and thermal stability, with ink-bottle-like pores. This suggests that the aminopropyl groups are not only linked to the pores inner surface but could be located in the pore walls or at their entrance.  相似文献   

5.
张波  汤明慧  袁剑  吴磊 《催化学报》2012,33(6):914-922
采用浸渍法制备了Si-MCM-41和Al-MCM-41(Si/Al=50)介孔分子筛,SiO2,γ-Al2O3及MgO等负载的ZrO2催化剂,考察了其在以异丙醇为氢源苯甲醛Meerwein-Ponndorf-Verley(MPV)还原反应中的催化活性,并与纯ZrO2的催化活性进行对比.同时,采用X射线衍射、N2吸脱附法、X射线光电子能谱、紫外-可见漫反射光谱和吡啶原位吸附红外光谱等手段表征了催化剂.结果表明,ZrO2负载于Si-MCM-41,Al-MCM-41和SiO2后,催化活性明显提高,这归因于ZrO2与载体间存在强相互作用形成ZrOSi键,使催化剂表面ZrOH数量显著增多,Lewis酸中心强度增强,并出现Brnsted酸中心,三种催化剂的活性高低次序是5%ZrO2/Si-MCM-41>5%ZrO2/Al-MCM-41>5%ZrO2/SiO2.而5%ZrO2/Al2O3和5%ZrO2/MgO基本无催化活性,可归因为ZrO2与γ-Al2O3的弱相互作用使5%ZrO2/Al2O3的酸性与γ-Al2O3类似,ZrO2与MgO的强相互作用使5%ZrO2/MgO基本无酸性.  相似文献   

6.
The surfactant assistant syntheses of sulfonic acid functionalized periodic mesoporous organosilicas with large pores are reported. A one-step condensation of tetramethoxysilane (TMOS) with 1,2-bis(trimethoxysilyl)ethane (BTME) and 3-mercaptopropyltrimethoxysilane (MPTMS) in highly acidic medium was performed in the presence of triblock copolymer Pluronic P123 and inorganic salt as additive. During the condensation process, thiol (-SH) group was in situ oxidized to sulfonic acid (-SO(3)H) by hydrogen peroxide (30 wt % H(2)O(2)). X-ray diffraction studies along with nitrogen and water sorption analyses reveal the formation of stable, highly hydrophobic, and well-ordered hexagonal mesoscopic structures in a wide range of -CH(2)CH(2)- concentrations in the mesoporous framework. The resultant materials were also investigated by (29)Si MAS and (13)C CP MAS NMR, thermogravimetric analyses, UV-Raman spectroscopy, and FT-IR spectroscopy. The role of the bridged organic group on the hydrothermal stability of the mesoporous materials was established, which revealed an enhancement in hydrothermal stability of the materials with incorporation of the bridged organic groups in the network. The catalytic performance of -SO(3)H functionalized mesoporous materials was investigated in the esterification of ethanol with acetic acid, and the results demonstrate that the ethane groups incorporated in the mesoporous framework have a positive influence on the catalytic behavior of the materials.  相似文献   

7.
The pore hierarchy of a hierarchical porous SiO2 with 14 nm spherical mesopores and 3 nm worm-like pores (KLE1C16) is studied by small-angle neutron scattering (SANS) in combination with in-situ nitrogen sorption at 77 K. A novel setup is used developed at Hahn-Meitner Institute, Berlin. It is demonstrated that in these materials indeed all of the large mesopores are connected through the smaller ones, thus providing invaluable insights into the general phenomenon of pore connectivity in mesoporous materials.  相似文献   

8.
使用P123(EO20PO70EO20)作为表面活性剂, 并通过正硅酸乙酯与含可以水解烷氧基团的[Ru(Phen)2Phen—Si]2+功能化配合物的水解和共缩聚反应, 成功地制备了共价嫁接[Ru(Phen)3]2+分子片断的复合SBA-15介孔杂化材料. 用红外光谱和发光强度猝灭Stern-Volmer曲线对样品进行了表征, 并分别用Demas双格位模型以及Lehrer模型对所获得的复合Ru-SBA-15样品的Stern-Volmer曲线进行了拟合. 实验结果表明, 所制备的传感样品对氧气具有较高的传感灵敏度. 发光分子与分子筛之间产生强有力的CH2—Si化学键使得该杂化材料具有可逆的氧传感信号和较好的光化学稳定性.  相似文献   

9.
Small-angle neutron scattering (SANS), contrast-matching SANS, and nitrogen adsorption have been utilized to investigate the confined ionic liquid (IL) [bmim][PF(6)] phase in ordered mesoporous silica MCM-41 and SBA-15. The results suggest that the pores of SBA-15 are completely filled with IL whereas a small fraction of the pore volume, the pore "core", of MCM-41 is empty. The contrast-matching SANS measurements confirm the enhanced solubility of water in IL. In addition, they provide strong evidence that water does not enter the empty pore core of MCM-41, possibly because of the preferred orientation of the IL molecules in the adsorbed layer.  相似文献   

10.
The synthesis and characterization of amino-functionalized mesoporous silica nanoparticles are presented following two different synthetic methods: co-condensation and post-synthesis grafting of 3-aminopropyltriethoxysilane. The amino groups’ distribution on the mesoporous silica nanoparticles was evaluated considering the aggregation state of a grafted photosensitizer (Verteporfin) by using spectroscopic techniques. The homogeneous distribution of amino groups within the silica network is a key factor to avoid aggregation during further organic functionalization and to optimize the performance of functionalized silica nanoparticles in biomedical applications. In addition, the formation of a protein corona on the external surface of both bare and amino-functionalized mesoporous silica was also investigated by adsorbing Bovine Serum Albumin (BSA) as a model protein. The adsorption of BSA was found to be favorable, reducing the aggregation phenomena for both bare and amino-modified nanoparticles. Nevertheless, the dispersant effect of BSA was much more evident in the case of amino-modified nanoparticles, which reached monodispersion after adsorption of the protein, thus suggesting that amino-modified nanoparticles can benefit from protein corona formation for preventing severe aggregation in biological media.  相似文献   

11.
Amino-functionalized MCM-41 has been prepared by grafting amino containing functional groups onto mesoporous silicate MCM-41 and characterized by powder X-ray diffraction, N2 adsorption/desorption measurement, SEM, FT-IR, thermogravimetry and elemental analysis to confirm the ordered mesoporous structure and the functionalization of the amino groups. Sorption behavior for 18 metal ions on this sorbent has been studied and discussed.  相似文献   

12.
Thermodynamic, structural, and dynamic properties of heavy water (D(2)O) confined in mesoporous silica glass MCM-41 C10, C12, and C14 were investigated by differential scanning calorimetry, neutron diffraction, and neutron spin echo (NSE) measurements, respectively. The DSC data showed that no crystallization of D(2)O confined in C10 occurs in a temperature range between 298 and 180 K, and that crystalline ice is formed at 204 and 221 K for C12 and C14, respectively. For C10, the neutron radial distribution functions of confined D(2)O suggested a structural change in the supercooled state between 223 and 173 K. For C10 sample, it has been found that the tetrahedral-like water structure is partially enhanced in the central part of pores at 173 K. For all the samples, the intermediate scattering functions from the NSE measurements are fitted by the Kohlrausch-Williams-Watts stretched exponential function which implies that confined supercooled D(2)O exhibits a wide distribution of relaxation times. For C10, C12, and C14 samples, between 298 and 240 K, the relaxation times of supercooled D(2)O follow remarkably well the Vogel-Fulcher-Tamman equation; for C10 sample, below 240 K, the relaxation times of nonfreezing D(2)O show an Arrhenius type behavior. From the present experimental results on calorimetric, structural, and dynamic properties, it has been concluded that supercooled D(2)O confined in MCM-41 C10 experiences a transition from high-density to low-density hydrogen-bonded structure at around 229 K.  相似文献   

13.
Covalent anchoring of functional dyes in the pores of a mesoporous silicate host Si-MCM-41 (shown in the picture) is achieved with the microwave-assisted cocondensation presented here. The short reaction time (20 min) ensures that no dye degrades during the hydrothermal synthesis.  相似文献   

14.
新型固体超强酸催化剂的制备与裂解性能研究   总被引:7,自引:0,他引:7  
采用浸渍法,将活性超强酸SO4^2-/ZrO2引入Si-MCM-41介孔分子筛,得到一种新型的固体超强酸催化剂SO4^2-/ZrO2 /Si-MCM-41,其PKA值可达-12.7,酸度分布曲线表明强酸中心数量远低于弱酸中心,XRD结果显示,Si-MCM-41骨架部分塌陷,但保留了主要骨架结构,采用Py-IP法,测定SO4^2-/ZrO2 /Si-MCM-41上酸类型以L酸为主,在催化1,3,5-三异丙苯裂解反应中该催化剂的性能优于微孔分子筛。  相似文献   

15.
Fluorocarbon groups were used to modify the pore channels of ethane-bridged periodic mesoporous organosilica by the co-condensation of 1,2-Bis(triethoxysilyl)ethane (BTESE) and trifluoropropyltrimethoxysilane (TFPTMS) in the presence of Poly(ethylene glycol)-B-Poly(propylene glycol)-B-Poly(ethylene glycol) (P123) surfactants under acidic conditions. The functionalized materials were investigated in detail by means of XRD, TEM, FT-IR, solid-state NMR, and N2 adsorption. The effect of fluorocarbon groups concentration on the mesoscopic order and pore structure of the functionalized materials was also studied. The results show that bridging groups in the framework do not cleave and fluorocarbon groups are attached covalently to the pore wall of periodic mesoporous organosilica after functionalization. The samples functionalized with 20% TFPTMS remain desired mesoporous architecture, with a narrow pore size distribution centered at 4.1 nm, a large surface of 834 m2/g and a pore volume of 0.91 cm3g−1, without pronounced change compared to the pure periodic mesoporous organosilica. Unfortunately the functionalized materials become structurally disordered with increasing amount of fluorocarbon groups.  相似文献   

16.
Since the discovery of a surfactant directed self-assembly approach for the fabrication of mesoporous silica in 1992, increasing attention has been focused on the design and synthesis of mesostructured functional materials. Organic functionalization is becoming a major topic in this research field, since highly ordered mesostructured organic-inorganic hybrids offer novel functionalities and enhanced performance over their individual components. We begin with a brief overview of the three fundamental methods (post-synthetic grafting technique, co-condensation method, and preparation of periodic mesoporous organosilicas) for the preparation of organically functionalized mesostructured silica, and focus on one of the most promising approaches, which herein was named as functional-template directed self-assembly (FTDSA) approach, and in the eyes of the authors it has a special position in the preparation of this class of hybrid materials. A comprehensive overview of the state of research in the area of FTDSA and its potential applications will be given.  相似文献   

17.
SEPEHRIAN  Harnid  WAQIF-HUSAIN  Syed  RAKHSHANDERU  Farrokh  KAMEL  Leila 《中国化学》2009,27(11):2171-2174
Modified MCM‐41 has been prepared by bi‐functionalization of thiol and amino functional groups onto mesoporous silicate MCM‐41. Elemental analysis (EA), thermogravimetry analysis (TGA) and FTIR techniques were used to quantify the attachment of the thiol and amino functional groups to the mesoporous silicate pore wall. Powder X‐ray diffraction (PXRD) and nitrogen adsorption techniques were used to establish the pore diameter, packing of the pores and specific surface area of the modified mesoporous silicate MCM‐41. Adsorption behavior for 18 metal ions on this sorbent has been studied and discussed. This sorbent has high affinity for zinc ions against amino‐ or thiol‐functionalized MCM‐41 sorbents.  相似文献   

18.
This work describes adsorption and wetting characterization of hydrophobic ordered mesoporous silicas (OMSs) with the SBA-15 motif. Three synthetic approaches to prepare hydrophobic SBA-15 silicas were explored: grafting with (1) covalently-attached monolayers (CAMs) of C(n)H(2)(n+1)Si(CH(3))(2)N(CH(3))(2), (2) self-assembled monolayers (SAMs) of C(n)H(2)(n+1)Si(OEt)(3), and (3) direct ("one-pot") co-condensation of TEOS with C(n)H(2)(n+1)Si(OEt)(3) in presence of P123 (n=1-18). The materials prepared were characterized by nitrogen adsorption, TEM, and chemical analysis. The surface properties of the materials were assessed by water contact angles (CAs) and by BET C constants. The results showed that, while loadings of the alkyl groups (%C) were comparable, the surface properties and pore ordering of the materials prepared through different methods were quite different. The best quality hydrophobic surfaces were prepared for SBA-15 grafted with CAMs of alkylsilanes. For these materials, the water CAs were above ~120°/100° (adv/rec) and BET C constants were in the range of ~15-25, indicating uniform low-energy surfaces of closely packed alkyl groups on external and internal surfaces of the pores respectively. Moreover, surfaces grafted with the long-chained (C(12)-C(18)) silanes showed super-hydrophobic behavior (CAs~150-180°) and extremely low adhesion for water. The pore uniformity of parental SBA-15 was largely preserved and the pore volume and pore diameter were consistent with the formation of a single layer of alkylsilyl groups inside the pores. Post-synthesis grafting of SBA-15 with SAMs worked not as well as CAMs: the surfaces prepared demonstrated lower water CAs and higher BET C constants, thereby indicating a small amount of accessible polar groups (Si-OH) related to packing constrains for SAMs supported on highly curved surfaces of mesopores. The co-condensation method produced substantially more disordered materials and less hydrophobic surfaces than any of the grafting methods. The surfaces of these materials showed low water CAs and high BET C constants (~100-200) thereby demonstrating a non-uniform surface coverage and presence of unmodified silica. It is concluded that CAMs chemistry is the most efficient approach in preparation of the functionalized OMS materials with uniform surfaces and pores.  相似文献   

19.
The Keggin and Preyssler tungsten heteropolyacids, H3PW12O40 and H15P5W30O110, have been immobilized on the inner surface of mesoporous MCM-41, fume silica and silica-gel by means of chemical bonding to aminosilane groups. The materials were characterized by FT-IR spectroscopy, low-angle XRD and BET surface area analysis. The tendencies of heteropolyacids adsorption in solution on functionalized silicas have been investigated by UV-vis. Among the functionalized silica materials, MCM-41 showed the largest amine to silica and the least heteropolyacid to silica ratios. The BET surface area revealed that in all three cases the surface area decreased after grafting amine group and anchoring of the HPAs clusters. Low-angle XRD analysis showed that by introducing HPA into functionalized MCM-41 the intensity of the main reflection decreased significantly.  相似文献   

20.
We study the magnetic properties of two new functionalized single-molecule magnets belonging to the Mn 6 family (general formula [Mn (III)6O2(R-sao)6(O2C-th)2L(4-6)], where R=H (1) or Et (2), HO2C-th=3-thiophene carboxylic acid, L=EtOH, H2O and saoH2 is salicylaldoxime) and their grafting on the Au(111) surface. Complex 1 exhibits spin ground-state S=4, as the result of ferromagnetic coupling between the two antiferromagnetic Mn (III) 3 triangles, while slight structural changes in complex 2, switch the dominant magnetic exchange interactions from anti- to ferromagnetic, enhancing the spin ground-state to S=12 and, consequently, the effective energy barrier for the relaxation of magnetization. Direct-current and alternating-current magnetic susceptibility measurements show that the functionalized complexes preserve the main magnetic properties of the corresponding not-functionalized Mn 6 clusters (i.e., total spin value and magnetic behavior as a function of temperature), though a reduction of the anisotropy barrier is observed in complex 2. For both complexes, the -O2C-th functionalization allows the direct grafting on Au(111) surface by liquid-phase deposition. X-ray photoemission spectroscopy demonstrates that the stoichiometry of the molecular cores is preserved after grafting. Scanning tunneling microscopy (STM) reveals a sub-monolayer distribution of isolated clusters with a slightly higher coverage for complex 1. The cluster stability in the STM images and the S-2p energy positions demonstrate, for both derivatives, the strength of the grafting with the gold surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号