首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Warmke H  Wiczk W  Ossowski T 《Talanta》2000,52(3):449-456
The influence of metal cations Li(+), Na(+), K(+), Cs(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Pb(2+) and Al(3+) on the spectroscopic properties of the dansyl (1-dimethylaminonaphthalene-5-sulfonyl) group covalently linked to monoaza crown ethers 1-aza-15-crown-5 (1,4,7,10,-tetraoxa-13-azacyclopentadecane) (A15C5) and 1-aza-crown-6 (1,4,7,10,13-pentaoxa-16-azacyclooctadecane) (A18C6) was investigated by means of absorption and emission spectrophotometry. Interaction of the alkali metal ions with both fluoroionophores is weak, while alkaline earth metal ions interact strongly causing 50 and 85% quenching of dansyl fluorescence of N-(5-dimethylamine-1-naphthalenesulfonylo)-1,4,7,10,-tetraoxa-13-azacyclopentadecane (A15C5-Dns) and N-(5-dimethylamine-1-naphthalenesulfonylo)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane (A18C6-Dns), respectively. The Cu(2+), Pb(2+) and Al(3+) cations interact very strongly with dansyl chromophore, causing a major change in absorption spectrum of the chromophore and forming non-fluorescent complexes. The Co(2+), Ni(2+), Zn(2+), Mg(2+) cations interact moderately with both fluoroionophores causing quenching of dansyl fluorescence by several percent only.  相似文献   

2.
In the standard electrospray ionization mass spectra of many common, low molecular mass organic compounds dissolved in methanol, peaks corresponding to ions with formula [3M + Met](2+) (M = organic molecule, Met = bivalent metal cation) are observed, sometimes with significant abundances. The most common are ions containing Mg(2+), Ca(2+) and Fe(2+). Their presence can be easily rationalized on the basis of typical organic reaction work-up procedures. The formation of [3M + Met](2+) ions has been studied using N-FMOC-proline methyl ester as a model organic ligand and Mg(2+), Ca(2+), Sr(2+), Ba(2+), Fe(2+), Ni(2+), Mn(2+), Co(2+) and Zn(2+) chlorides or acetates as the sources of bivalent cation. It was found that all ions studied form [3M + Met](2+) complexes with N-FMOC-proline methyl ester, some of them at very low concentrations. Transition metal cations generally show higher complexation activity in comparison with alkaline earth metal cations. They are also more specific in the formation of [3M + Met](2+) complexes. In the case of alkaline earth metal cations [2M + Met](2+) and [4M + Met](2+) complex ions are also observed. It has been found that [3M + Met](2+) complex ions undergo specific fragmentation at relatively low energy, yielding fluorenylmethyl cation as a major product. [M + Na](+) ions are much more stable and their fragmentation is not as specific.  相似文献   

3.
The series of alkaline earth elements magnesium, calcium, strontium and barium yields single crystalline imidazolate coordination polymers by reactions of the metals with a melt of 1H-imidazole: (1)(∞)[Mg(Im)(2)(ImH)(3)] (1), (2)(∞)[AE(Im)(2)(ImH)(2)], AE = Ca (2), Sr (3), and (1)(∞)[Ba(Im)(2)(ImH)(2)] (4). No additional solvents were used for the reactions. Co-doping experiments by addition of the rare earth elements cerium, europium and terbium were carried out. They indicate (2)(∞)[Sr(Im)(2)(ImH)(2)] as a possible host lattice for cerium(III) photoluminescence showing a blue emission and thus a novel blue emitting hybrid material phosphor 3:Ce(3+). Co-doping with europium and terbium is also possible but resulted in formation of (3)(∞)[Sr(Im)(2)]:Ln, Ln = Eu and Tb (5), with both exhibiting green emission of either Eu(2+) or Tb(3+). The other alkaline earth elements do not show acceptance of the rare earth ions investigated and a different structural chemistry. For magnesium and barium one-dimensional strand structures are observed whereas calcium and strontium give two-dimensional network structures. Combined with an increase of the ionic radii of AE(2+) the coordinative demand is also increasing from Mg(2+) to Ba(2+), reflected by four different crystal structures for the four elements Mg, Ca, Sr, Ba in 1-4. Different linkages of the imidazolate ligands result in a change from complete σ-N coordination in 1 to additional η(5)-π coordination in 4. The success of co-doping with different lanthanide ions is based on a match in the chemical behaviour and cationic radii. The use of strontium for host lattices with imidazole is a rare example in coordination chemistry of co-doping with small amounts of luminescence centers and successfully reduces the amount of high price rare earth elements in hybrid materials while maintaining the properties. All compounds are examples of pure N-coordinated coordination polymers of the alkaline earth metals and were identified by single crystal X-ray analysis and powder diffraction. The degree of co-doping was determined by SEM/EDX. Mid IR, Far IR and Raman spectroscopy and micro analyses as well as simultaneous DTA/TG were also carried out to characterize the products in addition to the photoluminescence studies of the co-doped samples.  相似文献   

4.
合成了一个新型香豆素/Betti碱主体化合物1,并对其进行了结构表征。在乙腈/水溶液中进行主体1和碱金属、碱土金属相关离子(Li+,Na+,K+,Rb+,Cs+,Be2+,Mg2+,Ca2+,Sr2+,Ba2+)的相互作用研究时,发现仅Rb+,Ba2+离子对主体1有敏感的紫外光谱及荧光光谱响应,而其它的碱金属、碱土金属离子无敏感性光响应。紫外光谱显示,Rb+,Ba2+离子使主体1产生明显的红移(ε=4.66×102L·(mol·cm)-1,Δ=91nm),肉眼可观察到明显的由浅黄向橙红色的颜色变化,并使主体1的荧光光谱发生一定程度的猝灭。  相似文献   

5.
A poly(amine ester) dendrimer with naphthyl units (G1N6) has been synthesized as a fluorescent chemosensor for metal ions. We investigated the metal-ion recognition of G1N6 by adding each of Ag(+), Al(3+), Ba(2+), Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Mg(2+), Ni(2+), and Zn(2+) in acetonitrile solution. Large changes were observed in the fluorescence spectra of G1N6 upon the addition of Al(3+), Cu(2+), and Zn(2+).  相似文献   

6.
Three different squaraine tethered bichromophoric podands 3a-c with one, two, and three oxygen atoms in the podand chain and an analogous monochromophore 4a were synthesized and characterized. Among these, the bichromophores 3a-c showed high selectivity toward alkaline earth metal cations, particularly to Mg(2+) and Ca(2+) ions, whereas they were optically silent toward alkali metal ions. From the absorption and emission changes as well as from the Job plots, it is established that Mg(2+) ions form 1:1 folded complexes with 3a and 3b whereas Ca(2+) ions prefer to form 1:2 sandwich dimers. However, 3c invariably forms weak 1:1 complexes with Mg(2+), Ca(2+), and Sr(2+) ions. The signal output in all of these cases was achieved by the formation of a sharp blue-shifted absorption and strong quenching of the emission of 3a-c. The signal transduction is achieved by the exciton interaction of the face-to-face stacked squaraine chromophores of the cation complex, which is a novel approach of specific cation sensing. The observed cation-induced changes in the optical properties are analogous to those of the "H" aggregates of squaraine dyes. Interestingly, a monochromophore 4a despite its binding, as evident from (1)H NMR studies, remained optically silent toward Mg(2+) and Ca(2+) ions. While the behavior of 4a toward Mg(2+) ion is understood, its optical silence toward Ca(2+) ion is rationalized to the preferential formation of a "Head-Tail-Tail-Head" arrangement in which exciton coupling is not possible. The present study is different from other known reports on chemosensors in the sense that cation-specific supramolecular host-guest complexation has been exploited for controlling chromophore interaction via cation-steered exciton coupling as the mode of signaling.  相似文献   

7.
Examples of a new type of cryptophane molecule incorporating aromatic groups in the bridges (1-4) and, for the first time, being also supplied with three endo-positional ionizable carboxylic acid functions (1) have been synthesized and characterized. The cryptophane triester 2 yielded a solvate (channel inclusion compound) with trichloromethane and water, the X-ray crystal structure of which is reported. The complexation of 1 with low-molecular-weight alcohols in solution was studied, and the liquid-liquid extraction of different metal ions including alkali (Na(+), Cs(+)), alkaline earth (Mg(2+), Ca(2+), Sr(2+), Ba(2+)), and the lanthanide metal ions Eu(3+) and Yb(3+) in an extraction system containing metal nitrate buffer/H(2)O/1/CHCl(3) was examined. Molecular modeling calculations of the cryptophanes 1 and 2, and of the Eu(3+) complex of 1 were carried out contributing to the discussion.  相似文献   

8.
A series of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) derivatives containing ion- and pH-sensory units have been successfully designed and synthesized. One of the compounds was structurally characterized by X-ray crystallography. Owing to the presence of an ICT absorption band, one of the compounds was found to show pronounced solvatochromic behavior in different organic solvents. Their emission energies in various solvents show a linear dependence on the Lippert solvent parameter. The cation-binding properties of the complexes with different metal ions (alkali metal, alkaline earth metal and transition metal ions) have been studied using UV-vis and emission spectroscopies. A 1?:?1 complexation to metal ions (Li(+), Na(+), Mg(2+), Ba(2+), Zn(2+), Cd(2+)) was found for the compound with one azacrown moiety in acetonitrile while another one with two azacrown moieties was shown to form 1?:?2 complexes with Zn(2+) and Mg(2+) cations. Their stability constants have been determined by both UV-vis and emission spectrophotometric methods. By introducing triarylborane moieties into the meso position and the 2-position of the BODIPY skeleton, different electronic absorption spectral changes together with an emission diminution were observed in response to fluoride ions. Ditopic binding study of 5, which was functionalized with both azacrown and triarylborane moieties, showed emission enhancement in the presence of Mg(2+) and F(-). These findings suggest that these BODIPY derivatives are capable of serving as versatile colorimetric and luminescence probes for pH, cations and F(-).  相似文献   

9.
The cation exchange properties of alkali and alkaline earth metal cations at room temperature were investigated on an ultrafine, highly charged Na-4-mica (with the ideal mica composition Na4Mg6Al4Si4O20F4.xH2O). Ultrafine mica crystallites of 200 nm in size led to faster Sr2+ uptake kinetics in comparison to larger mica crystallites. The alkali metal ion (K+, Cs+, and Li+) exchange uptake was rapid, and complete exchange occurred within 30 min. For the alkaline earth metal ions Ba2+, Ca2+, and Mg2+, however, the exchange uptake required lengthy periods from 3 days to 4 weeks to be completed, similar to its Sr uptake, as previously reported. Kinetic models of the modified Freundlich and parabolic diffusion were examined for the experimental data on the Ba2+, Ca2+, and Mg2+ uptakes. The modified Freundlich model described well the Ba2+ ion uptake kinetics as well as that for the Sr2+ ion, while for the Ca2+ and Mg2+ ions the parabolic diffusion model showed better fitting. The alkali and alkaline earth ion exchange isotherms were also determined in comparison to the Sr2+ exchange isotherm. The thermodynamic equilibria for these cations were compared by using Kielland plots evaluated from the isotherms.  相似文献   

10.
A fluorescent probe, PyCalix, which has two pyrene moieties at the lower rim of a calix[4]arene fixed in the cone conformation was synthesized and its complexation behavior with alkali and alkaline earth cations was studied by fluorescence spectrometry. The compound showed intramolecular excimer emission at approximately 480 nm in the fluorescence spectra. Upon complexation with alkaline earth metal cations, a decrease of excimer emission was observed. The decrease of excimer emission was accompanied by an increase of monomer emission of pyrenes at 397 nm. The order of complexation constants of PyCalix with metal ions was Sr(+ approximately Ca2+ > Ba2+ > Mg2+ > K+ > Na+ > Cs+ for all reagents. PyCalix doped polyvinyl chloride (PVC) membrane was fabricated and our results showed that this membrane can be used for selective detection of Sr2+.  相似文献   

11.
The interaction of the alkaline earth ions Mg(2+), Sr(2+) and Ba(2+) with the uranyl tricarbonato complex has been studied by time-resolved laser-induced fluorescence spectroscopy. In contrast to the non-luminescent uranyl tricarbonato complex at ambient temperature the formed products show luminescence properties. These have been used to determine the stoichiometry and complex stabilities of the formed compounds. As the alkaline earth elements are located in an outer shell of the complex the influence of the type of the alkaline earth element on the stability constant is not very drastic. The stability constants range from logbeta(113) degrees =26.07+/-0.13 to logbeta(113) degrees =26.93+/-0.25 for the first reaction step and from logbeta(213) degrees =29.73+/-0.47 to logbeta(213) degrees =30.79+/-0.29 for the overall complex formation with two alkaline earth ions.  相似文献   

12.
New 5-chloro-8-hydroxyquinoline (CHQ)-substituted aza-18-crown-6 (4), diaza-18-crown-6 (1), diaza-21-crown-7 (2), and diaza-24-crown-8 (3) ligands, where CHQ was attached through the 7-position, and aza-18-crown-6 (11) and diaza-18-crown-6 (10) macrocycles, where CHQ was attached through the 2-position, were prepared. Thermodynamic quantities for complexation of these CHQ-substituted macrocycles with alkali, alkaline earth, and transition metal ions were determined in absolute methanol at 25.0 degrees C by calorimetric titration. Two isomers, 1 and 10, which are different only in the attachment positions of the CHQ to the parent macroring, exhibit remarkable differences in their affinities toward the metal ions. Compound 1 forms very stable complexes with Mg(2+), Ca(2+), Cu(2+), and Ni(2+) (log K = 6.82, 5.31, 10.1, and 11.4, respectively), but not with the alkali metal ions. Ligand 10 displays strong complexation with K(+) and Ba(2+) (log K = 6.61 and 12.2, respectively) but not with Mg(2+) or Cu(2+). The new macrocycles and their complexes have been characterized by means of UV-visible and (1)H NMR spectra and X-ray crystallography. New peaks in the UV spectrum of the Mg(2+)-1 complex could allow an analytical determination of Mg(2+) in very dilute solutions in the presence of other alkali and alkaline earth metal cations. (1)H NMR spectral and X-ray crystallographic studies indicate that ligand 10 forms a cryptate-like structure when coordinated with K(+) and Ba(2+), which induces an efficient overlap of the two hydroxyquinoline rings. Such overlapping forms a pseudo second macroring that results in a significant increase in both complex stability and cation selectivity.  相似文献   

13.
Dansyl-anthracene dyads 1 and 2 in CH(3)CN-H(2)O (7:3) selectively recognize Cu(2+) ions amongst alkali, alkaline earth and other heavy metal ions using both absorbance and fluorescence spectroscopy. In absorbance, the addition of Cu(2+) to the solution of dyads 1 or 2 results in appearance of broad absorption band from 200 nm to 725 nm for dyad 1 and from 200 nm to 520 nm for dyad 2. This is associated with color change from colorless to blue (for 1) and fluorescent green (for 2). This bathochromic shift of the spectrum could be assigned to internal charge transfer from sulfonamide nitrogen to anthracene moiety. In fluorescence, under similar conditions dyads 1 and 2 on addition of Cu(2+) selectively quench fluorescence due to dansyl moiety between 520-570 nm (for 1)/555-650 nm (for 2) with simultaneous fluorescence enhancement at 470 nm and 505 nm for dyads 1 and 2, respectively. Hence these dyads provide opportunity for ratiometric analysis of 1-50 μM Cu(2+). The other metal ions viz. Fe(3+), Co(2+), Ni(2+), Cd(2+), Zn(2+), Hg(2+), Ag(+), Pb(2+), Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+) do not interfere in the estimation of Cu(2+) except Cr(3+) in case of dyad 1. The coordination of dimethylamino group of dansyl unit with Cu(2+) causes quenching of fluorescence due to dansyl moiety between 520-600 nm and also restricts the photoinduced electron transfer from dimethylamino to anthracene moiety to release fluorescence between 450-510 nm. This simultaneous quenching and release of fluorescence respectively due to dansyl and anthracene moieties emulates into Cu(2+) induced ratiometric change.  相似文献   

14.
A new pH and metal ion-responsive BODIPY-based fluorescent probe with an aza crown ether subunit has been synthesized via condensation of 4-(1,4,7,10-tetraoxa-13-aza-cyclopentadec-13-yl)-benzaldehyde with the appropriate 1,3,5,7-tetramethyl substituted boron dipyrromethene moiety. Steady-state and time-resolved fluorometries have been used to study the spectroscopic and photophysical characteristics of this probe in various solvents. The fluorescence properties of the dye are strongly solvent dependent: increasing the solvent polarity leads to lower fluorescence quantum yields and lifetimes, and the wavelength of maximum fluorescence emission shifts to the red. The Catalan solvent scales are found to be the most suitable for describing the solvatochromic shifts of the fluorescence emission. Fluorescence decay profiles of the dye can be described by a single-exponential fit in nonprotic solvents, whereas two decay times are found in alcohols. Protonation as well as complex formation with several metal ions are investigated in acetonitrile as solvent via fluorometric titrations. The aza crown ether dye undergoes a reversible (de)protonation reaction (pKa = 0.09) and shows a approximately 50 nm blue shift in the excitation spectra and a 10-fold fluorescence increase upon protonation. The compound also forms 1:1 complexes with several metal ions (Li(+), Na(+), Mg(2+), Ca(2+), Ba(2+), Zn(2+)), producing large blue shifts in the excitation spectra and significant cation-induced fluorescence amplifications.  相似文献   

15.
A detailed experimental and theoretical study has been undertaken of the UV photofragmentation spectroscopy of the alkaline earth metal dications Mg(2+), Ca(2+), and Sr(2+) complexed with pyridine and 4-methyl pyridine (4-picoline). The ion complexes have been prepared using the pick-up technique and held in an ion trap where their internal temperature has been reduced to <150 K. Exposure of the trapped ions to tunable UV laser radiation leads to the appearance of photofragments with intensities that show significant variation as a function of wavelength. For all three metal dications, the resultant spectra show evidence of resolved features. Time-dependent density functional theory (TDDFT) has been used to identify possible electronic transitions that might be present in the [M(pyridine)(4)](2+) complexes (M = Mg, Ca, and Sr) within the wavelength range studied. These calculations show that the spectra are dominated by strong π* ← π and weaker π* ← n transitions localized on the pyridine ligands. The calculations correctly identify those regions of the experimental spectra where UV transitions begin to occur in the complexes and also the wavelengths at which absorption maxima are reached; however, more subtle features of the spectra are difficult to assign with confidence.  相似文献   

16.
Seven different samples of an inorganic ion exchanger, cerium phosphate, suitable for column use have been prepared under varying conditions. The property of these exchangers has been characterized by Inductively Coupled Plasma Spectroscopy. These exchangers are stable in water, dilute mineral acids, ethanol, methanol, acetone and ether. However, in concentrated HCl and HNO(3) they decompose. They retain about 50% of their exchange value after drying at 80 degrees C, and can be regenerated twice without any decrease in exchange capacity. The distribution coefficient measurements for alkaline earth metals, tellurium, iodine and molybdenum using these seven ion exchangers were studied. This revealed the relative affinity for each exchanger, where the sorption in general was most effective at pH 6-8. The titration curves of cerium phosphate (disodium) with alkaline earth metals showed that the selectivity sequence Ba(2+)>Sr(2+)>Ca(2+)>Mg(2+) is observed. Furthermore, it could be deduced that the adsorption of alkaline earth metal cations greatly depends on the cation. These studies have also shown that cerium phosphates with divalent ions are strongly preferred to monovalent ones. Therefore, as for the cerium phosphates with large monovalent ions, the lack of exchange for Ba(2+), Mg(2+) or other alkali earth metal ions should be essentially due to steric hindrance and this could include any one of the following: the large crystalline radius of metal ions or large hydrated ionic radius and high energy of hydration for other divalent ions. Three binary separations of Te(IV)-Mo(VI), Te(IV)-I(I) and Mo(VI)-I(I) has been developed and the recovery ranging from 90 to 100% has been achieved on cerium phosphate (disodium) columns.  相似文献   

17.
The synthesis of a new oxaaza macrocyclic ligand, L, derived from O(1),O(7)-bis(2-formylphenyl)-1,4,7-trioxaheptane and tren containing an amine terminal pendant arm, and its metal complexation with alkaline earth (M = Ca(2+), Sr(2+), Ba(2+)), transition (M = Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+)), post-transition (M = Pb(2+)), and Y(3+) and lanthanide (M = La(3+), Er(3+)) metal ions are reported. Crystal structures of [H(2)L](ClO(4))(2).3H(2)O, [PbL](ClO(4))(2), and [ZnLCl](ClO(4)).H(2)O are also reported. In the [PbL] complex, the metal ion is located inside the macrocyclic cavity coordinated by all N(4)O(3) donor atoms while, in the [ZnLCl] complex, the metal ion is encapsulated only by the nitrogen atoms present in the ligand. pi-pi interactions in the [H(2)L](ClO(4))(2).3H(2)O and [PbL](ClO(4))(2) structures are observed. Protonation and Zn(2+), Cd(2+), and Cu(2+) complexation were studied by means of potentiometric, UV-vis, and fluorescent emission measurements. The 10-fold fluorescence emission increase observed in the pH range 7-9 in the presence of Zn(2+) leads to L as a good sensor for this biological metal in water solution.  相似文献   

18.
The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M(2+)(H(2)O)(n) (M = Mg, Ca, and Sr for n = 5-7, and M = Ba for n = 4-7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (E(o)) are determined. These reactions should have a negligible reverse activation barrier; therefore, E(o) values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca(2+), Sr(2+), and Ba(2+) are consistent with structures in which all the water molecules are located in the first solvation shell.  相似文献   

19.
The response of a monoaza-15-crown-5 with an optically active aminobenzoxazinone moiety to divalent cations was investigated. The crown ether was found to undergo a strong emission shift to the blue when complexed with specific divalent metals that have ionic diameters between 1.9-2.4 A. Consequently the photoactive macrocycle is responsive to Mg(2+), Ca(2+), Ba(2+), Sr(2+), Cd(2+), and particularly responsive to Hg(2+)and Pb(2+). Macrocycle emission spectra are shown to be a function of cation concentration. Alkaline metal cations and smaller transition metals ions such as Ni(2+), Co(2+)and Zn(2+)do not cause significant changes in the macrocycle emission spectra. Emission, absorption, and complex stability constants are determined. Mechanisms of cation selectivity and spectral emission shifts are discussed. Challenges involving immobilization of the macrocycle while preserving its spectral response to cations are explored.  相似文献   

20.
Analysis of 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (anandamide) via alkali or alkaline earth metal-adduct high-energy collision-induced dissociation (CID) in fast-atom bombardment (FAB) ionization-mass spectrometry (MS) is described. The CID-MS/MS of the [2-AG+Li](+) or [2-AG+Na](+) ion undergoes charge-remote fragmentation (CRF), which is useful for the determination of the double-bond positions in the hydrocarbon chain, while the CID-MS/MS of the [2-AG-H+Cat](+) (Cat = Mg(2+), Ca(2+), Ba(2+)) ion provides an abundant fragment ion of the cationized arachidonic acid species, which is derived from cleaving the ester bond via a McLafferty-type rearrangement in addition to structurally informative CRF ions in small amounts. On the other hand, the CID-MS/MS spectra of anandamide cationized with both alkali metal (Li(+) or Na(+)) and alkaline earth metal (Mg(2+), Ca(2+), or Ba(2+)) show CRF patterns: the spectra obtained in lithium or sodium adduct are more clearly visible than those in magnesium, calcium, or barium adduct. The McLafferty rearrangement is not observed with metal-adduct anandamide. The characteristics in each mass spectrum are useful for the detection of these endogenous ligands. m-Nitrobenzyl alcohol (m-NBA) is the most suitable matrix. A lithium-adduct [2-AG+Li](+) or [anandamide+Li](+) ion is observed to be the most abundant in each mass spectrum, since the affinity of lithium for m-NBA is lower than that for other matrices examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号