首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear polystyrene-stabilized PdO nanoparticles (PS-PdONPs) were prepared by thermal decomposition of Pd(OAc)(2) in the presence of polystyrene. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated the production of PdO nanoparticles. The loading of palladium was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). PS-PdONPs exhibited high catalytic activity for Mizoroki-Heck reactions under air in water and could be recycled without loss of activity.  相似文献   

2.
Two types of polymer‐supported nanometal catalysts with high catalytic activity and recyclability in water have been developed. One catalyst was composed of linear polystyrene‐stabilized metal nanoparticles (PS‐MtNPs). A palladium catalyst (PS‐PdONPs) was prepared in water by the thermal decomposition of Pd(OAc)2 in the presence of polystyrene. The degree of immobilization of Pd, but not the size of the Pd nanoparticles, was dependent on the molecular weight and cross‐linking of the polystyrene. The PS‐PdONPs exhibited high catalytic activity for Suzuki, Heck, and Sonogashira coupling reactions in water and they could be recycled without loss of activity. Linear polystyrene was also suitable as a stabilizer for in situ generated PdNPs and PtNPs. The second catalyst was a polyion complex that was composed of poly[4‐chloromethylstyrene‐co‐(4‐vinylbenzyl)tributylammonium chloride] and poly(acrylic acid)‐stabilized PdNPs (PIC‐PdNPs). Aggregation and redispersion of PIC‐PdNPs were easily controlled by adjusting the pH value of the solution.  相似文献   

3.
A new polystyrene anchored Pd(II) azo complex has been synthesized and characterized. The present Pd(II) azo complex behaves as a very efficient heterogeneous catalyst in the Suzuki coupling and Sonogashira coupling reaction in water medium. Aryl halides, coupled with phenylboronic acids (Suzuki-Miyaura reaction) or terminal alkyne (Sonogashira reaction), smoothly afford the corresponding cross-coupling products in excellent yields (83-100% yield for Suzuki reaction and 68-96% yield for Sonogashira reaction of aryl halides) under phosphine-free reaction conditions in the presence of polystyrene anchored Pd(II) azo complex catalyst in water medium. Furthermore, the catalyst has shown good thermal stability and recyclability. This polymer-supported Pd(II) catalyst could be easily recovered by simple filtration of the reaction mixture and reused for more than six consecutive trials without a significant loss of its catalytic activity.  相似文献   

4.
Palladium nanoparticles supported on activated carbon were prepared by argon glow discharge plasma reduction (Pd/C‐P) without any chemical reducing agents and protective agents. The as‐prepared Pd/C‐P catalyst was characterized using nitrogen adsorption–desorption, X‐ray diffraction and transmission electron microscopy analyses. The results showed that the palladium nanoparticles reduced by plasma are well dispersed with a smaller particle size than commercial Pd/C. Pd/C‐P exhibited a high catalytic activity in Suzuki and Heck coupling reactions. Moreover, there was no obvious loss of catalytic activity even after eight repeated cycles, showing good reactivity and recyclability.  相似文献   

5.
Sudeshna Sawoo 《Tetrahedron》2009,65(22):4367-4374
Catalytically active Pd nanoparticles have been synthesized in water by a novel reduction of Pd(II) with a Fischer carbene complex where polyethylene glycol (PEG) was used as stabilizer. PEG molecules wrap around the nanoparticles to impart stability and prevent agglomeration, yet leave enough surface area available on the nanoparticle for catalytic activity. Our method is superior to others in terms of rapid generation and stabilization of Pd nanoparticles in water with a cheap, readily available PEG stabilizer. The size of the nanoparticles generated can be controlled by the concentration of PEG in water medium. The size decreased with the increase in the PEG: Pd ratio. This aqueous nano-sized Pd is a highly efficient catalyst for Suzuki, Heck, Sonogashira, and Stille reaction. Water is used as the only solvent for the coupling reactions.  相似文献   

6.
In this paper, a highly active, air‐ and moisture‐stable and easily recoverable magnetic nanoparticles tethered mesoionic carbene palladium (II) complex (MNPs‐MIC‐Pd) as nanomagnetic catalyst was successfully synthesized by a simplistic multistep synthesis under aerobic conditions using commercially available inexpensive chemicals for the first time. The synthesized MNPs‐MIC‐Pd nanomagnetic catalyst was in‐depth characterized by numerous physicochemical techniques such as FT‐IR, ICP‐AES, FESEM, EDS, TEM, p‐XRD, XPS, TGA and BET surface area analysis. The prepared MNPs‐MIC‐Pd nanomagnetic catalyst was used to catalyze the Suzuki–Miyaura and Mizoroki–Heck cross‐coupling reactions and exhibited excellent catalytic activity for various substrates under mild reaction conditions. Moreover, MNPs‐MIC‐Pd nanomagnetic catalyst could be easily and rapidly recovered by applying an external magnet. The recovered MNPs‐MIC‐Pd nanomagnetic catalyst exhibited very good catalytic activity up to ten times in Suzuki–Miyaura and five times in Mizoroki–Heck cross‐coupling reactions without considerable loss of its catalytic activity. However, MNPs‐MIC‐Pd nanomagnetic catalyst shows notable advantages such as heterogeneous nature, efficient catalytic activity, mild reaction conditions, easy magnetic work up and recyclability.  相似文献   

7.
When a single metal fails to promote an efficient Suzuki‐Miyaura coupling reaction at ambient temperature, the synergistic cooperation of two distinct metals might improve the reaction. To examine the synergistic effect of palladium and nickel for catalyzing Suzuki coupling reaction, g‐C3N4 supported metal nanoparticles of PdO, NiO and Pd‐PdO‐NiO were prepared, characterized and their catalytic activities evaluated over different aryl halides at room temperature and 78 °C. The morphological characterization of Pd‐PdO‐NiO/g‐C3N4 demonstrated that the bimetallic particles were uniformly dispersed over the g‐C3N4 layers with diameters ranging from 3.5‐7.7 nm. XPS analysis showed that nanoparticles of Pd‐PdO‐NiO consisted of Pd(II), Pd(0) and Ni(II) sites. The experiments performed on the catalytic activity of Pd‐PdO‐NiO/g‐C3N4 showed that the prepared catalyst demonstrated an efficient activity without using toxic solvents.  相似文献   

8.
Herein, we report the synthesis of tiny spherical Pd nanoparticles (NPs) by green chemical method under ambient conditions using flower extract of Lantana camara plant. The size of the Pd NPs is tunable from 4.7 to 6.3 nm by systematically controlling the concentration of either metal ions or plant extract. The synthesized Pd NPs were well characterized by different spectroscopic, microscopic and diffractometric techniques. The Pd NPs offered good size‐dependent catalytic activity in the Suzuki‐Miyaura C‐C coupling reaction under mild reaction conditions in (1: 1) water‐ethanol mixture. The catalyst is stable and exhibited excellent reusability up to three cycles of coupling reaction after which the catalytic activity decreases.  相似文献   

9.
Several water-soluble cyclopalladated complexes with five- or six-membered rings have been prepared as air-stable solids from Schiff base ligands bearing an N-phenyl sulfonate groups. Cyclopalladated complexes with six-membered rings show high catalytic efficiency for the Suzuki reactions of aryl bromides with phenylboronic acid in aqueous solvents under mild conditions. Palladium complex 1 can be used for five reaction cycles in high conversions for the Suzuki reactions in neat water without additives. The catalytic process for the Suzuki couplings is proved by TEM analysis to proceed on Pd(0) nanoparticles. Surfactant-protected palladium nanoparticles present lower activities and poorer recyclability for the coupling reactions than those generated in situ without additives.  相似文献   

10.
The Suzuki coupling was carried out using a new, efficient and reusable polymer-supported Pd/IL catalyst (PEt@IL/Pd) under aqueous conditions. This catalyst was prepared through coacervation approach followed by treatment with Pd(OAc)2. The FT-IR, SEM, TGA, TEM, XPS, ICP and EDX techniques were employed to characterize the PEt@IL/Pd. This catalyst exhibited high activity in the Suzuki coupling reaction under green conditions. Moreover, the catalyst could be recycled and reapplied for six times with no appreciable loss in its activity. The leaching test also showed high stability of catalytic Pd species under applied conditions.  相似文献   

11.
Electrochemically codeposited palladium nanoparticles (Pd NPs) and reduced graphene oxide (ERGO-Pd) were used as catalyst for Suzuki cross coupling reactions. The catalyst was characterized by various analytical techniques. The mean particle size of Pd was found to be 5.7 ± 1.8 nm. The ERGO-Pd catalyst demonstrated excellent catalytic activity and recyclability for Suzuki cross coupling reactions. The remarkable reactivity of the ERGO-Pd catalyst toward cross-coupling reactions is attributed to the high degree of the dispersion of Pd NPs on reduced graphene oxide with narrow size distribution from 3 to 9 nm.  相似文献   

12.
《Comptes Rendus Chimie》2015,18(6):636-643
Pd supported on diethylenetriamine (DETA) modified single-walled carbon nanotubes (SWCNT-DETA/Pd) hybrid materials were fabricated for the first time. The prepared heterogeneous catalyst was characterized by XRD, FTIR, SEM, TGA, and TEM. The catalytic activity of the prepared catalyst was investigated by employing the Suzuki–Miyaura coupling reaction as a model reaction. A series of biphenyl compounds were synthesized through the Suzuki–Miyaura reaction using SWCNT-DETA/Pd2+ as a catalyst. The yields of the products were in the range from 80% to 98%. The catalyst can be readily recovered and reused at least for seven consecutive cycles without significant loss of its catalytic activity.  相似文献   

13.
A new bis(N ‐heterocyclic carbene) (NHC) palladium complex supported on silica coated magnetic nanoparticles (MNPs) was prepared using the reaction of synthesized Pd‐NHC complex with MNPs. The Pd‐NHC complex was prepared using the reaction of a hydroxyl‐functionalized bis‐imidazolium ionic liquid. The Pd‐NHC organometallic complex was used as a heterogeneous recyclable and active catalyst in the Suzuki‐Miyaura reaction and various aryl halides were coupled with arylboronic acids in order to synthesize diverse biaryls in good to excellent yields. The prepared catalyst was characterized by use of some different microscopic and spectroscopic techniques including elemental analysis, FT‐IR spectroscopy, diffuse reflectance UV–Vis spectrophotometery, scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and X‐ray diffraction (XRD). The Pd‐NHC catalyst system is a magnetic reusable catalyst and it can be separated from the reaction mixture using an external magnetic field. The catalyst was reusable in the Suzuki‐Miyaura coupling reaction at least for 6 times without significant decreasing in its catalytic activity.  相似文献   

14.
《Comptes Rendus Chimie》2017,20(2):132-139
Supported Pd–S-methylisothiourea on magnetic nanoparticles (Pd–SMU-MNPs) as an efficient and magnetically reusable nanocatalyst was prepared and applied for the Heck and Suzuki cross-coupling reactions. All coupling reactions proceeded in short reaction times with good to excellent yields. After completion of reactions, the catalyst was easily separated from the reaction mixture using an external magnetic field and reused for several consecutive runs without significant loss of its catalytic efficiency and activity. This nanomagnetic catalyst was characterized by FT-IR spectroscopy, XRD, VSM, ICP-OES, TEM and SEM techniques. The leaching of the catalyst has been examined by a hot filtration test and ICP-OES analysis.  相似文献   

15.
In this work, an easily obtained procedure was successfully implemented to prepare novel palladium nanoparticles decorated on triethanolammonium chloride ionic liquid‐functionalized TiO2 nanoparticles [TiO2/IL‐Pd]. Different methods were carried out for characterizations of the synthesized nanocatalyst (HR‐TEM, XPS, XRD, FE‐SEM, EDX, FT‐IR and ICP). TiO2/IL‐Pd indicated good catalytic activity for the Suzuki–Miyaura cross‐coupling reaction of arylboronic acid with different aryl halides in aqueous media at ambient temperature. The recycled catalyst was investigated with ICP to amount of Pd leaching after 6 times that had diminished slightly, Thus, was confirmed that the nanocatalyst has a good sustainability for C–C Suzuki–Miyaura coupling reaction. The catalyst can be conveniently separated by filtration of the reaction mixture and reused for 6 times without significant loss of its activity. It supplies an environmentally benign alternative path to the existing protocols for the Suzuki–Miyaura reaction.  相似文献   

16.
We have successfully prepared 6.5 nm palladium tin (PdSn) alloy nanoparticles (NPs) with tunable compositions by high‐temperature reduction of tin acetate and palladium bromide in the presence of oleylamine and trioctylphosphine. The catalytic activities of PdSn NPs with different compositions were evaluated through Suzuki reactions. The PdSn nanocatalysts show better catalytic activity on Suzuki reactions than an equal amount of pure Pd NPs, and their catalytic activities are highly composition dependent. Among these NPs, Pd63Sn37/C NPs exhibited the highest catalytic performance with higher reaction activity, lower Pd leaching properties, and higher stability even after eight recycle reactions.  相似文献   

17.
Palladium's pore cousin: a facile approach is described for the size-controlled preparation of porous single-crystalline Pd nanoparticles. These porous Pd nanoparticles exhibit size-independent catalytic activities for the Suzuki coupling and are more active than commercial Pd/C catalysts.  相似文献   

18.
A suitable approach to stabilize palladium nanoparticles (Pd NPs), with an average diameter of 3–4 nm, on magnetic polymer is described. A new magnetic polymer containing 4′‐(4‐hydroxyphenyl)‐2,2′:6′,2″‐terpyridine (HPTPy) ligand was prepared by the polymerization of itaconic acid (ITC) as a monomer and trimethylolpropane triacrylate (TMPTA) as a cross‐linker and fully characterized. Pd NPs embedded on the magnetic polymer were successfully applied in Suzuki–Miyaura and Mizoroki–Heck coupling reactions under low palladium loading conditions, and provided the corresponding products with excellent yields (up to 98%) and high catalytic activities (TOF up to 257 hr?1). Also, the catalyst can be easily separated and reused for at least consecutive five times with a small drop in catalytic activity.  相似文献   

19.
Nanoparticles (2–10 nm) of palladium have been deposited on single wall carbon nanotubes (SWNT) by spontaneous reduction from Pd(OAc)2 or from oxime carbapalladacycle. These catalysts exhibit higher catalytic activity than palladium over activated carbon (Pd/C) for the Heck reaction of styrene and iodobenzene and for the Suzuki coupling of phenylboronic and iodobenzene. This fact has been attributed as reflecting the dramatic influence of the size particle on the activity of the palladium catalyst for CC bond forming reactions as compared to other reaction types less demanding from the point of view of the particle size. Thus, in contrast to the Heck and Suzuki reactions, Pd/C is more active than palladium nanoparticles deposited on SWNT for the catalytic oxidation by molecular oxygen of cinnamyl alcohol to cinnamaldehyde and for the hydrogenation of cinnamaldehyde to 3-phenylpropionaldehyde.  相似文献   

20.
正电性磁性氧化铁胶粒负载钯催化的Suzuki偶联反应   总被引:1,自引:0,他引:1  
发展了一种超顺磁性Fe3O4纳米粒子负载Pd0的简易方法. 利用Fe3O4溶胶带正电荷的特性, 将负离子 通过静电作用吸附在Fe3O4胶体粒子表面( /Fe3O4), 以抗坏血酸(Vc)进一步还原即得到载有金属Pd团簇的Fe3O4胶体粒子(Pd0/Fe3O4). 该磁性载体负载的Pd催化剂对Suzuki反应表现出良好的催化活性, 且在反应后, 可方便地通过永久磁铁将催化剂从反应体系中分离出来, 进行循环使用. 试验表明, 该催化剂在循环使用五次后反应活性无明显下降. 进一步试验发现, 这种磁性纳米粒子负载的金属钯对一系列卤代芳烃的Suzuki偶联反应均表现出较优的催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号