首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We consider the solution of nonlinear programs with nonlinear semidefiniteness constraints. The need for an efficient exploitation of the cone of positive semidefinite matrices makes the solution of such nonlinear semidefinite programs more complicated than the solution of standard nonlinear programs. This paper studies a sequential semidefinite programming (SSP) method, which is a generalization of the well-known sequential quadratic programming method for standard nonlinear programs. We present a sensitivity result for nonlinear semidefinite programs, and then based on this result, we give a self-contained proof of local quadratic convergence of the SSP method. We also describe a class of nonlinear semidefinite programs that arise in passive reduced-order modeling, and we report results of some numerical experiments with the SSP method applied to problems in that class.  相似文献   

2.
Exploiting sparsity has been a key issue in solving large-scale optimization problems. The most time-consuming part of primal-dual interior-point methods for linear programs, second-order cone programs, and semidefinite programs is solving the Schur complement equation at each iteration, usually by the Cholesky factorization. The computational efficiency is greatly affected by the sparsity of the coefficient matrix of the equation which is determined by the sparsity of an optimization problem (linear program, semidefinite program or second-order cone program). We show if an optimization problem is correlatively sparse, then the coefficient matrix of the Schur complement equation inherits the sparsity, and a sparse Cholesky factorization applied to the matrix results in no fill-in. S. Kim’s research was supported by Kosef R01-2005-000-10271-0 and KRF-2006-312-C00062.  相似文献   

3.
This paper is concerned with nonlinear, semidefinite, and second-order cone programs. A general algorithm, which includes sequential quadratic programming and sequential quadratically constrained quadratic programming methods, is presented for solving these problems. In the particular case of standard nonlinear programs, the algorithm can be interpreted as a prox-regularization of the Solodov sequential quadratically constrained quadratic programming method presented in Mathematics of Operations Research (2004). For such type of methods, the main cost of computation amounts to solve a linear cone program for which efficient solvers are available. Usually, “global convergence results” for these methods require, as for the Solodov method, the boundedness of the primal sequence generated by the algorithm. The other purpose of this paper is to establish global convergence results without boundedness assumptions on any of the iterative sequences built by the algorithm.  相似文献   

4.
This paper presents a globally convergent and locally superlinearly convergent method for solving a convex minimization problem whose objective function has a semismooth but nondifferentiable gradient. Applications to nonlinear minimax problems, stochastic programs with recourse, and their extensions are discussed.The research of the first author is based on work supported by the National Science Foundation under Grants DDM-9104078 and CCR-9213739. This research was carried out while he was visiting the University of New South Wales. The research of the second author is based on work supported by the Australian Research Council.  相似文献   

5.
 There recently has been much interest in non-interior continuation/smoothing methods for solving linear/nonlinear complementarity problems. We describe extensions of such methods to complementarity problems defined over the cone of block-diagonal symmetric positive semidefinite real matrices. These extensions involve the Chen-Mangasarian class of smoothing functions and the smoothed Fischer-Burmeister function. Issues such as existence of Newton directions, boundedness of iterates, global convergence, and local superlinear convergence will be studied. Preliminary numerical experience on semidefinite linear programs is also reported. Received: October 1999 / Accepted: April 2002 Published online: December 19, 2002 RID="⋆" ID="⋆" This research is supported by National Science Foundation Grant CCR-9731273. Key words. semidefinite complementarity problem – smoothing function – non-interior continuation – global convergence – local superlinear convergence  相似文献   

6.
We discuss first and second order optimality conditions for nonlinear second-order cone programming problems, and their relation with semidefinite programming problems. For doing this we extend in an abstract setting the notion of optimal partition. Then we state a characterization of strong regularity in terms of second order optimality conditions. This is the first time such a characterization is given for a nonpolyhedral conic problem. Dedicated to R.T. Rockafellar on the occasion of his 70th birthday. Partially supported by Ecos-Conicyt C00E05.  相似文献   

7.
 The authors of this paper recently introduced a transformation [4] that converts a class of semidefinite programs (SDPs) into nonlinear optimization problems free of matrix-valued constraints and variables. This transformation enables the application of nonlinear optimization techniques to the solution of certain SDPs that are too large for conventional interior-point methods to handle efficiently. Based on the transformation, we proposed a globally convergent, first-order (i.e., gradient-based) log-barrier algorithm for solving a class of linear SDPs. In this paper, we discuss an efficient implementation of the proposed algorithm and report computational results on semidefinite relaxations of three types of combinatorial optimization problems. Our results demonstrate that the proposed algorithm is indeed capable of solving large-scale SDPs and is particularly effective for problems with a large number of constraints. Received: June 22, 2001 / Accepted: January 20, 2002 Published online: December 9, 2002 RID="†" ID="†"Computational results reported in this paper were obtained on an SGI Origin2000 computer at Rice University acquired in part with support from NSF Grant DMS-9872009. RID="⋆" ID="⋆"This author was supported in part by NSF Grants CCR-9902010, INT-9910084 and CCR-0203426 RID="⋆⋆" ID="⋆⋆"This author was supported in part by NSF Grants CCR-9902010, INT-9910084 and CCR-0203113 RID="⋆⋆⋆" ID="⋆⋆⋆"This author was supported in part by DOE Grant DE-FG03-97ER25331, DOE/LANL Contract 03891-99-23 and NSF Grant DMS-9973339. Key Words. semidefinite program – semidefinite relaxation – nonlinear programming – interior-point methods – limited memory quasi-Newton methods. Mathematics Subject Classification (1991): 90C06, 90C27, 90C30.  相似文献   

8.
Semidefinite programs are a class of optimization problems that have been studied extensively during the past 15 years. Semidefinite programs are naturally related to linear programs, and both are defined using deterministic data. Stochastic programs were introduced in the 1950s as a paradigm for dealing with uncertainty in data defining linear programs. In this paper, we introduce stochastic semidefinite programs as a paradigm for dealing with uncertainty in data defining semidefinite programs.The work of this author was supported in part by the U.S. Army Research Office under Grant DAAD 19-00-1-0465. The material in this paper is part of the doctoral dissertation of this author in preparation at Washington State University.  相似文献   

9.
 In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied in two different ways. One is by a conversion of a given sparse SDP having a large scale positive semidefinite matrix variable into an SDP having multiple but smaller positive semidefinite matrix variables. The other is by incorporating a positive definite matrix completion itself in a primal-dual interior-point method. The current article presents the details of their implementations. We introduce new techniques to deal with the sparsity through a clique tree in the former method and through new computational formulae in the latter one. Numerical results over different classes of SDPs show that these methods can be very efficient for some problems. Received: March 18, 2001 / Accepted: May 31, 2001 Published online: October 9, 2002 RID="⋆" ID="⋆"The author was supported by The Ministry of Education, Culture, Sports, Science and Technology of Japan. Key Words. semidefinite programming – primal-dual interior-point method – matrix completion problem – clique tree – numerical results Mathematics Subject Classification (2000): 90C22, 90C51, 05C50, 05C05  相似文献   

10.
The Lovász theta number of a graph G can be viewed as a semidefinite programming relaxation of the stability number of G. It has recently been shown that a copositive strengthening of this semidefinite program in fact equals the stability number of G. We introduce a related strengthening of the Lovász theta number toward the chromatic number of G, which is shown to be equal to the fractional chromatic number of G. Solving copositive programs is NP-hard. This motivates the study of tractable approximations of the copositive cone. We investigate the Parrilo hierarchy to approximate this cone and provide computational simplifications for the approximation of the chromatic number of vertex transitive graphs. We provide some computational results indicating that the Lovász theta number can be strengthened significantly toward the fractional chromatic number of G on some Hamming graphs. Partial support by the EU project Algorithmic Discrete Optimization (ADONET), MRTN-CT-2003-504438, is gratefully acknowledged.  相似文献   

11.
In earlier proposals, the robust counterpart of conic optimization problems exhibits a lateral increase in complexity, i.e., robust linear programming problems (LPs) become second order cone problems (SOCPs), robust SOCPs become semidefinite programming problems (SDPs), and robust SDPs become NP-hard. We propose a relaxed robust counterpart for general conic optimization problems that (a) preserves the computational tractability of the nominal problem; specifically the robust conic optimization problem retains its original structure, i.e., robust LPs remain LPs, robust SOCPs remain SOCPs and robust SDPs remain SDPs, and (b) allows us to provide a guarantee on the probability that the robust solution is feasible when the uncertain coefficients obey independent and identically distributed normal distributions. The research of the author was partially supported by the Singapore-MIT alliance. The research of the author is supported by NUS academic research grant R-314-000-066-122 and the Singapore-MIT alliance.  相似文献   

12.
We analyze the rate of local convergence of the augmented Lagrangian method in nonlinear semidefinite optimization. The presence of the positive semidefinite cone constraint requires extensive tools such as the singular value decomposition of matrices, an implicit function theorem for semismooth functions, and variational analysis on the projection operator in the symmetric matrix space. Without requiring strict complementarity, we prove that, under the constraint nondegeneracy condition and the strong second order sufficient condition, the rate of convergence is linear and the ratio constant is proportional to 1/c, where c is the penalty parameter that exceeds a threshold . The research of Defeng Sun is partly supported by the Academic Research Fund from the National University of Singapore. The research of Jie Sun and Liwei Zhang is partly supported by Singapore–MIT Alliance and by Grants RP314000-042/057-112 of the National University of Singapore. The research of Liwei Zhang is also supported by the National Natural Science Foundation of China under project grant no. 10471015 and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China.  相似文献   

13.
Methods are developed and analyzed for estimating the distance to a local minimizer of a nonlinear programming problem. One estimate, based on the solution of a constrained convex quadratic program, can be used when strict complementary slackness and the second-order sufficient optimality conditions hold. A second estimate, based on the solution of an unconstrained nonconvex, nonsmooth optimization problem, is valid even when strict complementary slackness is violated. Both estimates are valid in a neighborhood of a local minimizer. An active set algorithm is developed for computing a stationary point of the nonsmooth error estimator. Each iteration of the algorithm requires the solution of a symmetric, positive semidefinite linear system, followed by a line search. Convergence is achieved in a finite number of iterations. The error bounds are based on stability properties for nonlinear programs. The theory is illustrated by some numerical examples.  相似文献   

14.
The robustification of trading strategies is of particular interest in financial market applications. In this paper we robustify a portfolio strategy recently introduced in the literature against model errors in the sense of a worst case design. As it turns out, the resulting optimization problem can be solved by a sequence of linear and nonlinear semidefinite programs (SDP/NSDP), where the nonlinearity is introduced by the parameters of a parabolic differential equation. The nonlinear semidefinite program naturally arises in the computation of the worst case constraint violation which is equivalent to an eigenvalue minimization problem. Further we prove convergence for the iterates generated by the sequential SDP-NSDP approach.  相似文献   

15.
In this paper we study robust convex quadratically constrained programs, a subset of the class of robust convex programs introduced by Ben-Tal and Nemirovski [4]. In contrast to [4], where it is shown that such robust problems can be formulated as semidefinite programs, our focus in this paper is to identify uncertainty sets that allow this class of problems to be formulated as second-order cone programs (SOCP). We propose three classes of uncertainty sets for which the robust problem can be reformulated as an explicit SOCP and present examples where these classes of uncertainty sets are natural. Research partially supported by DOE grant GE-FG01-92ER-25126, NSF grants DMS-94-14438, CDA-97-26385, DMS-01-04282 and ONR grant N000140310514.Research partially supported by NSF grants CCR-00-09972, DMS-01-04282 and ONR grant N000140310514.  相似文献   

16.
We study the properties of the augmented Lagrangian function for nonlinear semidefinite programming. It is shown that, under a set of sufficient conditions, the augmented Lagrangian algorithm is locally convergent when the penalty parameter is larger than a certain threshold. An error estimate of the solution, depending on the penalty parameter, is also established.The first author was partially supported by Singapore-MIT Alliance and by the National University of Singapore under Grants RP314000-028/042/057-112. The second author was partially supported by the Funds of the Ministry of Education of China for PhD Units under Grant 20020141013 and the National Natural Science Foundation of China under Grant 10471015.  相似文献   

17.
We first show that the closedness of the characteristic cone of the constraint system of a parametric robust linear optimization problem is a necessary and sufficient condition for each robust linear program with the finite optimal value to admit exact semidefinite linear programming relaxations. We then provide the weakest regularity condition that guarantees exact second-order cone programming relaxations for parametric robust linear programs.  相似文献   

18.
We show that the Fischer-Burmeister complementarity functions, associated to the semidefinite cone (SDC) and the second order cone (SOC), respectively, are strongly semismooth everywhere. Interestingly enough, the proof relys on a relationship between the singular value decomposition of a nonsymmetric matrix and the spectral decomposition of a symmetric matrix.The author’s research was partially supported by Grant R146-000-035-101 of National University of Singapore.The author’s research was partially supported by Grant R314-000-042/057-112 of National University of Singapore and a grant from the Singapore-MIT Alliance.Mathematics Subject Classification (2000): 90C33, 90C22, 65F15, 65F18  相似文献   

19.
We propose minimum volume ellipsoids (MVE) clustering as an alternative clustering technique to k-means for data clusters with ellipsoidal shapes and explore its value and practicality. MVE clustering allocates data points into clusters in a way that minimizes the geometric mean of the volumes of each cluster’s covering ellipsoids. Motivations for this approach include its scale-invariance, its ability to handle asymmetric and unequal clusters, and our ability to formulate it as a mixed-integer semidefinite programming problem that can be solved to global optimality. We present some preliminary empirical results that illustrate MVE clustering as an appropriate method for clustering data from mixtures of “ellipsoidal” distributions and compare its performance with the k-means clustering algorithm as well as the MCLUST algorithm (which is based on a maximum likelihood EM algorithm) available in the statistical package R. Research of the first author was supported in part by a Discovery Grant from NSERC and a research grant from Faculty of Mathematics, University of Waterloo. Research of the second author was supported in part by a Discovery Grant from NSERC and a PREA from Ontario, Canada.  相似文献   

20.
Algorithms for nonlinear programming and variational inequality problems are, in general, only guaranteed to converge in the limit to a Karush-Kuhn-Tucker point, in the case of nonlinear programs, or to a solution in the case of variational inequalities. In this paper, we derive sufficient conditions for nonlinear programs with convex feasible sets such that any convergent algorithm can be modified, by adding a convex subproblem with a linear objective function, to guarantee finite convergence in a generalized sense. When the feasible set is polyhedral, the subproblem is a linear program and finite convergence is obtained. Similar results are also developed for variational inequalities.The research of the first author was supported in part by the Office of Naval Research under Contract No. N00014-86-K-0173.The authors are indebted to Professors Olvi Mangasarian, Garth McCormick, Jong-Shi Pang, Hanif Sherali, and Hoang Tuy for helpful comments and suggestions and to two anonymous referees for constructive remarks and for bringing to their attention the results in Refs. 13 and 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号