首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
Employing the optimality (necessary and sufficient) conditions of a nondifferentiable minimax programming problem in complex spaces, we formulate a one-parametric dual and a parameter free dual problems. On both dual problems, we establish three duality theorems: weak, strong, and strict converse duality theorem, and prove that there is no duality gap between the two dual problems with respect to the primal problem under some generalized convexities of complex functions in the complex programming problem.  相似文献   

3.
Employing the optimality (necessary and sufficient) conditions of a nondifferentiable minimax programming problem in complex spaces, we formulate a one-parametric dual and a parameter free dual problems. On both dual problems, we establish three duality theorems: weak, strong, and strict converse duality theorem, and prove that there is no duality gap between the two dual problems with respect to the primal problem under some generalized convexities of complex functions in the complex programming problem.  相似文献   

4.
The relationships between multiple optimal dual solutions of a convex programming problem and the corresponding primal optimal value function are established by straightforward arguments on known results in duality theory. The subsequent discussion includes a demonstration that one-sided shadow prices can be found by solving a linear programming problem, conditions for the uniqueness and validity of the classical shadow price interpretation and a specialization of the results to the linear programming case.  相似文献   

5.
《Optimization》2012,61(8):1247-1258
In this article, the standard primal and dual linear semi-infinite programming (DLSIP) problems are reformulated as linear programming (LP) problems over cones. Therefore, the dual formulation via the minimal cone approach, which results in zero duality gap for the primal–dual pair for LP problems over cones, can be applied to linear semi-infinite programming (LSIP) problems. Results on the geometry of the set of the feasible solutions for the primal LSIP problem and the optimality criteria for the DLSIP problem are also discussed.  相似文献   

6.
本文在文[1]的基础上,讨论一般形式多阶段有补偿非线性随机规划问题的广义对偶理论与最优化性条件.通过发掘凸规划对偶理论的本质,首先推广了与通常规划问题对偶理论有关的概念的含义,由此构造出所论问题在等价意义下的广义原始泛函与广义对偶泛函,进而得到其广义对偶理论,所得结论不仅能恰当合理地反映问题本身的属性,而且有关定理的表述形式简明、结论较强,可直接应用于多阶段有补偿问题的其它理论研究与数值求解算法的设计中去.上述结果与所用研究方法均推广和发展了通常的对偶理论  相似文献   

7.
Necessary and sufficient conditions of optimality are given for a nonlinear nondifferentiable program, where the constraints are defined via closed convex cones and their polars. These results are then used to obtain an existence theorem for the corresponding stationary point problem, under some convexity and regularity conditions on the functions involved, which also guarantee an optimal solution to the programming problem. Furthermore, a dual problem is defined, and a strong duality theorem is obtained under the assumption that the constraint sets of the primal and dual problems are nonempty.  相似文献   

8.
We establish the sufficient optimality conditions for a minimax programming problem involving p fractional n-set functions under generalized invexity. Using incomplete Lagrange duality, we formulate a mixed-type dual problem which unifies the Wolfe type dual and Mond-Weir type dual in fractional n-set functions under generalized invexity. Furthermore, we establish three duality theorems: weak, strong, and strict converse duality theorem, and prove that the optimal values of the primal problem and the mixed-type dual problem have no duality gap under extra assumptions in the framework. This research was partly supported by the National Science Council, NSC 94-2115-M-033-003, Taiwan.  相似文献   

9.
In this paper, we are concerned with an interval-valued programming problem. Sufficient optimality conditions are established under generalized convex functions for a feasible solution to be an efficient solution. Appropriate duality theorems for Mond-Weir and Wolfe type duals are discussed in order to relate the efficient solutions of primal and dual programs.  相似文献   

10.
Cross decomposition for mixed integer programming   总被引:6,自引:0,他引:6  
Many methods for solving mixed integer programming problems are based either on primal or on dual decomposition, which yield, respectively, a Benders decomposition algorithm and an implicit enumeration algorithm with bounds computed via Lagrangean relaxation. These methods exploit either the primal or the dual structure of the problem. We propose a new approach, cross decomposition, which allows exploiting simultaneously both structures. The development of the cross decomposition method captures profound relationships between primal and dual decomposition. It is shown that the more constraints can be included in the Langrangean relaxation (provided the duality gap remains zero), the fewer the Benders cuts one may expect to need. If the linear programming relaxation has no duality gap, only one Benders cut is needed to verify optimality.  相似文献   

11.
A second-order dual to a nonlinear programming problem is formulated. This dual uses the Fritz John necessary optimality conditions instead of the Karush-Kuhn-Tucker necessary optimality conditions, and thus, does not require a constraint qualification. Weak, strong, strict-converse, and converse duality theorems between primal and dual problems are established.  相似文献   

12.
A duality theory for algebraic linear (integer) programming (ALP) is developed which is of the same importance for linear (integer) programming with linear algebraic objectives as linear programming duality is for classical LP. In particular, optimality criteria for primal, primal-dual, and dual methods are given which generalize feasibility and complementarity criteria of classical LP. Strong duality results are given for special combinatorial problems. Further, the validity and finiteness of a primal simplex method based on a feasibility criterion are proved in the case of nondiscrete variables. In this case a strong duality result is shown.  相似文献   

13.
In this paper we present a duality approach for a multiobjective fractional programming problem. The components of the vector objective function are particular ratios involving the square of a convex function and a positive concave function. Applying the Fenchel-Rockafellar duality theory for a scalar optimization problem associated to the multiobjective primal, a dual problem is derived. This scalar dual problem is formulated in terms of conjugate functions and its structure gives an idea about how to construct a multiobjective dual problem in a natural way. Weak and strong duality assertions are presented.  相似文献   

14.
Careful inspection of the geometry of the primal linear programming problem reveals the Kuhn-Tucker conditions as well as the dual. Many of the well-known special cases in duality are also seen from the geometry, as well as the complementary slackness conditions and shadow prices. The latter at demonstrated to differ from the dual variables in situations involving primal degeneracy. Virtually all the special relationships between linear programming and duality theory can be seen from the geometry of the primal and an elementary application of vector analysis.  相似文献   

15.
《Applied Mathematical Modelling》2014,38(7-8):2151-2162
This paper deals with multi-commodity flow problem with fractional objective function. The optimality conditions and the duality concepts of this problem are given. For this aim, the fractional linear programming formulation of this problem is considered and the weak duality, the strong direct duality and the weak complementary slackness theorems are proved applying the traditional duality theory of linear programming problems which is different from same results in Chadha and Chadha (2007) [1]. In addition, a strong (strict) complementary slackness theorem is derived which is firstly presented based on the best of our knowledge. These theorems are transformed in order to find the new reduced costs for fractional multi-commodity flow problem. These parameters can be used to construct some algorithms for considered multi-commodity flow problem in a direct manner. Throughout the paper, the boundedness of the primal feasible set is reduced to a weaker assumption about solvability of primal problem which is another contribution of this paper. Finally, a real world application of the fractional multi-commodity flow problem is presented.  相似文献   

16.

In this paper, we establish some quotient calculus rules in terms of contingent derivatives for the two extended-real-valued functions defined on a Banach space and study a nonsmooth multiobjective fractional programming problem with set, generalized inequality and equality constraints. We define a new parametric problem associated with these problem and introduce some concepts for the (local) weak minimizers to such problems. Some primal and dual necessary optimality conditions in terms of contingent derivatives for the local weak minimizers are provided. Under suitable assumptions, sufficient optimality conditions for the local weak minimizers which are very close to necessary optimality conditions are obtained. An application of the result for establishing three parametric, Mond–Weir and Wolfe dual problems and several various duality theorems for the same is presented. Some examples are also given for our findings.

  相似文献   

17.
本文提出了一种整数规划中的指数一对数对偶.证明了此指数-对数对偶方法具有的渐近强对偶性质,并提出了不需要进行对偶搜索来解原整数规划问题的方法.特别地,当选取合适的参数和对偶变量时,原整数规划问题的解可以通过解一个非线性松弛问题来得到.对具有整系数目标函数及约束函数的多项式整规划问题,给出了参数及对偶变量的取法.  相似文献   

18.
In this paper we deal with the minimization of a convex function over the solution set of a range inclusion problem determined by a multivalued operator with convex graph. We attach a dual problem to it, provide regularity conditions guaranteeing strong duality and derive for the resulting primal–dual pair necessary and sufficient optimality conditions. We also discuss the existence of optimal solutions for the primal and dual problems by using duality arguments. The theoretical results are applied in the context of the control of linear discrete systems.  相似文献   

19.
In this paper, we present an original method to solve convex bilevel programming problems in an optimistic approach. Both upper and lower level objective functions are convex and the feasible region is a polyhedron. The enumeration sequential linear programming algorithm uses primal and dual monotonicity properties of the primal and dual lower level objective functions and constraints within an enumeration frame work. New optimality conditions are given, expressed in terms of tightness of the constraints of lower level problem. These optimality conditions are used at each step of our algorithm to compute an improving rational solution within some indexes of lower level primal-dual variables and monotonicity networks as well. Some preliminary computational results are reported.  相似文献   

20.
In this paper, we introduce a new dual program, which is representable as a semidefinite linear programming problem, for a primal convex minimax programming problem, and we show that there is no duality gap between the primal and the dual whenever the functions involved are sum-of-squares convex polynomials. Under a suitable constraint qualification, we derive strong duality results for this class of minimax problems. Consequently, we present applications of our results to robust sum-of-squares convex programming problems under data uncertainty and to minimax fractional programming problems with sum-of-squares convex polynomials. We obtain these results by first establishing sum-of-squares polynomial representations of non-negativity of a convex max function over a system of sum-of-squares convex constraints. The new class of sum-of-squares convex polynomials is an important subclass of convex polynomials and it includes convex quadratic functions and separable convex polynomials. The sum-of-squares convexity of polynomials can numerically be checked by solving semidefinite programming problems whereas numerically verifying convexity of polynomials is generally very hard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号