首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper we study the Fourier transform of unbounded measures on a locally compact groupG. After a short introductory section containing background material, especially results established byL. Argabright andJ. Gil De Lamadrid we turn to the main subjects of the paper: first we characterize \(\Re \left( G \right), \mathfrak{J}\left( G \right)\) andB(G) cones in \(\mathfrak{W}\left( G \right)\) . After that we establish the subspace \(\mathfrak{W}_\Delta \left( G \right)\) of \(\mathfrak{W}\left( G \right)\) which contains \(\mathfrak{W}_p \left( G \right)\) , the linear span of all positive definite measures.  相似文献   

2.
A locally convex Lie group G has the Trotter property if, for every $x_1, x_2 \in \mathfrak{g }$ , $$\begin{aligned} \exp _G(t(x_1 + x_2))=\lim _{n \rightarrow \infty } \left(\exp _G\left(\frac{t}{n}x_1\right)\exp _G\left(\frac{t}{n}x_2\right)\right)^n \end{aligned}$$ holds uniformly on compact subsets of $\mathbb{R }$ . All locally exponential Lie groups have this property, but also groups of automorphisms of principal bundles over compact smooth manifolds. A key result of the present article is that, if G has the Trotter property, $\pi : G \rightarrow {\mathrm{GL}}(V)$ is a continuous representation of G on a locally convex space, and $v \in V$ is a vector such that $\overline{\mathtt{d}\pi }(x)v :=\frac{d}{dt}|_{t=0} \pi (\exp _G(tx))v$ exists for every $x \in \mathfrak{g }$ , then the map $\mathfrak{g }\rightarrow V,x \mapsto \overline{\mathtt{d}\pi }(x)v$ is linear. Using this result we conclude that, for a representation of a locally exponential Fréchet–Lie group G on a metrizable locally convex space, the space of $\mathcal{C }^{k}$ -vectors coincides with the common domain of the k-fold products of the operators $\overline{\mathtt{d}\pi }(x)$ . For unitary representations on Hilbert spaces, the assumption of local exponentiality can be weakened to the Trotter property. As an application, we show that for smooth (resp., analytic) unitary representations of Fréchet–Lie supergroups $(G,\mathfrak{g })$ where G has the Trotter property, the common domain of the operators of $\mathfrak{g }=\mathfrak{g }_{\overline{0}}\oplus \mathfrak{g }_{\overline{1}}$ can always be extended to the space of smooth (resp., analytic) vectors for G.  相似文献   

3.
LetG be an arbitrary domain in \(\bar C\) ,f a function meromorphic inG, $$M_f \mathop = \limits^{def} \mathop {\lim \sup }\limits_{G \mathrel\backepsilon z \to \partial G} \left| {f(z)} \right|< \infty ,$$ andR the sum of the principal parts in the Laurent expansions off with respect to all its poles inG. We set $$f_G (z) = R(z) - \alpha ,{\mathbf{ }}where{\mathbf{ }}\alpha = \mathop {\lim }\limits_{z \to \infty } (f(z) - R(z))$$ in case ∞?G, andα=0 in case ∞?G. It is proved that $$\left\| {f_G } \right\|_{C(\partial G)} \leqq 50(\deg f_G )M_f ,{\mathbf{ }}\left\| {f'_G } \right\|_{L_1 (\partial G)} \leqq 50(\deg f_G )V(\partial G)M_f ,$$ where $$V(\partial G) = \sup \left\{ {\left\| {r'} \right\|_{L_1 (\partial G)} :r(z) = a/(z - b),{\mathbf{ }}\left\| r \right\|_{G(\partial G)} \leqq 1} \right\}.$$   相似文献   

4.
5.
In this paper, we explicitly construct the quantum $\mathfrak{g}\mathfrak{l}_n $ Gaudin model for general n and for a general number N of particles. To this end, we construct a commutative family in $U(\mathfrak{g}\mathfrak{l}_n )^{ \otimes N} $ . When passing to the classical limit (which is the projection onto the associated graded algebra), our family gives the entire family of classical Gaudin Hamiltonians. The construction is based on the special limit of the Bethe subalgebra in the Yangian $Y(\mathfrak{g}\mathfrak{l}_n )$ .  相似文献   

6.
The Iwahori?CHecke algebra H(G, B) of a finite Chevalley group G with respect to a Borel subgroup B is described as a deformation of the group algebra of the Weyl group of G Similarly, the +-part of the quantized enveloping algebra ${{U^+_v (\mathfrak{g})}}$ associated with a semisimple Lie algebra ${{\mathfrak{g}}}$ can be viewed as a deformation of the +-part of the universal enveloping algebra ${{U(\mathfrak{g})}}$ . In both cases it is shown how information concerning the deformed algebras H(G, B) and ${{U^+_v (\mathfrak{g})}}$ can be used to obtain results about the representation theory of the Chevalley group G and the semisimple Lie algebra ${{\mathfrak{g}}}$ .  相似文献   

7.
8.
Let $ \mathfrak{g} $ be the complex semisimple Lie algebra associated to a complex semisimple algebraic group G, $ \mathfrak{b} $ a Borel subalgebra of $ \mathfrak{g} $ , $ \mathfrak{h}\subset \mathfrak{b} $ the Cartan sublagebra, and N ? G the unipotent subgroup corresponding to the nilradical $ \mathfrak{n}\subset \mathfrak{b} $ . We show that the explicit formula for the extremal projection operator for $ \mathfrak{g} $ obtained by Asherova, Smirnov, and Tolstoy and similar formulas for Zhelobenko operators are related to the existence of a birational equivalence $ N\times \mathfrak{h}\to \mathfrak{b} $ given by the restriction of the adjoint action. Simple geometric proofs of formulas for the “classical” counterparts of the extremal projection operator and of Zhelobenko operators are also obtained.  相似文献   

9.
LetG be a compact group andM 1(G) be the convolution semigroup of all Borel probability measures onG with the weak topology. We consider a stationary sequence {μ n } n=?∞ +∞ of random measures μ n n (ω) inM 1(G) and the convolutions $$v_{m,n} (\omega ) = \mu _m (\omega )* \cdots *\mu _{n - 1} (\omega ), m< n$$ and $$\alpha _n^{( + k)} (\omega ) = \frac{1}{k}\sum\limits_{i = 1}^k {v_{n,n + i} (\omega ),} \alpha _n^{( - k)} (\omega ) = \frac{1}{k}\sum\limits_{i = 1}^k {v_{n - i,n} (\omega )} $$ We describe the setsA m + (ω) andA n + (ω) of all limit points ofv m,n(ω) asm→?∞ orn→+∞ and the setA (ω) of its two-sided limit points for typical realizations of {μ n (ω)} n=?∞ +∞ . Using an appropriate random ergodic theorem we study the limit random measures ρ n (±) (ω)=lim k→∞ α n k) (ω).  相似文献   

10.
Let ${\mathcal{B}_{p,w}}$ be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space ${L^p(\mathbb{R},w)}$ , where ${p\in(1,\infty)}$ and w is a Muckenhoupt weight. We study the Banach subalgebra ${\mathfrak{U}_{p,w}}$ of ${\mathcal{B}_{p,w}}$ generated by all multiplication operators aI ( ${a\in PSO^\diamond}$ ) and all convolution operators W 0(b) ( ${b\in PSO_{p,w}^\diamond}$ ), where ${PSO^\diamond\subset L^\infty(\mathbb{R})}$ and ${PSO_{p,w}^\diamond\subset M_{p,w}}$ are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of ${\mathbb{R}\cup\{\infty\}}$ , and M p,w is the Banach algebra of Fourier multipliers on ${L^p(\mathbb{R},w)}$ . Under some conditions on the Muckenhoupt weight w, using results of the local study of ${\mathfrak{U}_{p,w}}$ obtained in the first part of the paper and applying the theory of Mellin pseudodifferential operators and the two idempotents theorem, we now construct a Fredholm symbol calculus for the Banach algebra ${\mathfrak{U}_{p,w}}$ and establish a Fredholm criterion for the operators ${A\in\mathfrak{U}_{p,w}}$ in terms of their Fredholm symbols. In four partial cases we obtain for ${\mathfrak{U}_{p,w}}$ more effective results.  相似文献   

11.
We classify good ?-gradings of basic Lie superalgebras over an algebraically closed field $\mathbb{F}$ of characteristic zero. Good ?-gradings are used in quantum Hamiltonian reduction for affine Lie superalgebras, where they play a role in the construction of super W-algebras. We also describe the centralizer of a nilpotent even element and of an $\mathfrak{s}\mathfrak{l}_2$ -triple in $\mathfrak{g}\mathfrak{l}\left( {\left. m \right|n} \right)$ and $\mathfrak{o}\mathfrak{s}\mathfrak{p}\left( {\left. m \right|2n} \right)$ .  相似文献   

12.
В статье даны полные д оказательства следу ющих утверждений. Пустьω — непрерывная неубывающая полуадд итивная функций на [0, ∞),ω(0)=0 и пусть M?[0, 1] — матрица узл ов интерполирования. Если $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n > 0$$ то существует точкаx 0∈[0,1] и функцияf ∈ С[0,1] таки е, чтоω(f, δ)=О(ω(δ)), для которой $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x_0 ) - f(x_0 )| > 0$$ Если же $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n = \infty$$ , то существуют множес твоE второй категори и и функцияf ∈ С[0,1],ω(f, δ)=o(ω(δ)) та кие, что для всехxE $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x)| = \infty$$ . Исправлена погрешно сть, допущенная автор ом в [5], и отмеченная в работе П. Вертеши [9].  相似文献   

13.
For three coadjoint orbits \(\mathcal {O}_1, \mathcal {O}_2\) and \(\mathcal {O}_3\) in \(\mathfrak {g}^*\) , the Corwin–Greenleaf function \(n(\mathcal {O}_1 \times \mathcal {O}_2, \mathcal {O}_3)\) is given by the number of \(G\) -orbits in \(\{(\lambda , \mu ) \in \mathcal {O}_1 \times \mathcal {O}_2 \, : \, \lambda + \mu \in \mathcal {O}_3 \}\) under the diagonal action. In the case where \(G\) is a simple Lie group of Hermitian type, we give an explicit formula of \(n(\mathcal {O}_1 \times \mathcal {O}_2, \mathcal {O}_3)\) for coadjoint orbits \(\mathcal {O}_1\) and \(\mathcal {O}_2\) that meet \(\left( [\mathfrak {k}, \mathfrak {k}] + \mathfrak {p}\right) ^{\perp }\) , and show that the formula is regarded as the ‘classical limit’ of a special case of Kobayashi’s multiplicity-free theorem (Progr. Math. 2007) in the branching law to symmetric pairs.  相似文献   

14.
Let \(\bar B^* \) be a separable reduced (abelian)p-group which is torsion complete. We ask whether for \(G \subseteq \bar B^* \) there is \(H \subseteq _{pr} \bar B^* ,H[p] = G[p]\) ,H[p]=G[p],H not isomorphic toG. IfG is the sum of cyclic groups or is torsion complete, the answer is easily no. For otherG, we prove that the answer is yes assuming G.C.H. Even without G.C.H. the answer is yes if the density character ofG is equal to Min n|p nG|, i.e., $$\mathop {Min}\limits_{n< \omega } |p^n G| = \mathop {Min}\limits_m \mathop \Sigma \limits_{n > m} |(p^n G)[p]/(p^{n + 1} G)[p]|$$ Of course, instead of two non-isomorphic we can get many, but we do not deal much with this.  相似文献   

15.
16.
We study the ultrapowers $L_1 (\mu )_\mathfrak{U} $ of aL 1(μ) space, by describing the components of the well-known representation $L_1 (\mu )_\mathfrak{U} = L_1 (\mu _\mathfrak{U} ) \oplus _1 L_1 (\nu _\mathfrak{U} )$ , and we give a representation of the projection from $L_1 (\mu )_\mathfrak{U} $ onto $L_1 (\mu _\mathfrak{U} )$ . Moreover, the subsequence splitting principle forL 1(μ) motivates the following question: if $\mathfrak{V}$ is an ultrafilter on ? and $[f_i ] \in L_1 (\mu )_\mathfrak{V} $ , is it possible to find a weakly convergent sequence (g i ) ?L 1(μ) following $\mathfrak{V}$ and a disjoint sequence (h i ) ?L 1(μ) such that [f i ]=[g i ]+[h i ]? If $\mathfrak{V}$ is a selective ultrafilter, we find a positive answer by showing that $f = [f_i ] \in L_1 (\mu )_\mathfrak{V} $ belongs to $L_1 (\mu _{_\mathfrak{V} } )$ if and only if its representatives {f i } are weakly convergent following $\mathfrak{V}$ and $f \in L_1 (\nu _\mathfrak{V} )$ if and only if it admits a representative consisting of pairwise disjoint functions. As a consequence, we obtain a new proof of the subsequence splitting principle. If $\mathfrak{V}$ is not a p-point then the above characterizations of $L_1 (\nu _{_\mathfrak{V} } )$ and $L_1 (\nu _{_\mathfrak{V} } )$ fail and the answer to the question is negative.  相似文献   

17.
Let \(\mathfrak{M}\) be the Medvedev lattice: this paper investigates some filters and ideals (most of them already introduced by Dyment, [4]) of \(\mathfrak{M}\) . If \(\mathfrak{G}\) is any of the filters or ideals considered, the questions concerning \(\mathfrak{G}\) which we try to answer are: (1) is \(\mathfrak{G}\) prime? What is the cardinality of \({\mathfrak{M} \mathord{\left/ {\vphantom {\mathfrak{M} \mathfrak{G}}} \right. \kern-0em} \mathfrak{G}}\) ? Occasionally, we point out some general facts on theT-degrees or the partial degrees, by which these questions can be answered.  相似文献   

18.
A. K. Steiner undE. F. Steiner described the socalled natural topology κ on spacesA B of transfinite sequences (a β), β∈B,a βA [J. Math. Anal. Appl.19, 174–178 (1967)]. These spaces generalize Baire's zerodimensional sequence-spaces. Using these spaces (A B, κ), we generalize two well known theorems of F. Hausdorff, W. Hurewicz, C. Kuratowski and K. Morita on metric spaces and their Lebesgue-dimension respectively, both involving Baire's sequence spaces. Thus we obtain a topological characterization of uniform spaces \((X,\mathfrak{U})\) with a linearly ordered base \(\mathfrak{B}\) of \(\mathfrak{U}\) .  相似文献   

19.
We prove an analogon of the the fundamental homomorphism theorem for certain classes of exact and essentially surjective functors of Abelian categories $\mathcal{Q}:\mathcal{A} \to \mathcal{B}$ . It states that $\mathcal{Q}$ is up to equivalence the Serre quotient $\mathcal{A} \to \mathcal{A} / \ker \mathcal{Q}$ , even in cases when the latter does not admit a section functor. For several classes of schemes X, including projective and toric varieties, this characterization applies to the sheafification functor from a certain category $\mathcal{A}$ of finitely presented graded modules to the category $\mathcal{B}=\mathfrak{Coh}\, X$ of coherent sheaves on X. This gives a direct proof that $\mathfrak{Coh}\, X$ is a Serre quotient of $\mathcal{A}$ .  相似文献   

20.
Let $\mathfrak{g}$ be a semisimple Lie algebra and $\mathfrak{k}$ be a reductive subalgebra in $\mathfrak{g}$ . We say that a $\mathfrak{g}$ -module M is a $(\mathfrak{g},\mathfrak{k})$ -module if M, considered as a $\mathfrak{k}$ -module, is a direct sum of finite-dimensional $\mathfrak{k}$ -modules. We say that a $(\mathfrak{g},\mathfrak{k})$ -module M is of finite type if all $\mathfrak{k}$ -isotopic components of M are finite-dimensional. In this paper we prove that any simple $(\mathfrak{g},\mathfrak{k})$ -module of finite type is holonomic. A simple $\mathfrak{g}$ -module M is associated with the invariants V(M), V(LocM), and L(M) reflecting the ??directions of growth of M.?? We also prove that for a given pair $(\mathfrak{g},\mathfrak{k})$ the set of possible invariants is finite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号