首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Radioactive109In(j π=9/2+;T 1/2=4.2h) and110In(j π=7+;T 1/2=4.9h) were produced via the109Ag (α, xn) reactions and recoil-implanted into Fe foils. With the technique of nuclear magnetic resonance on oriented nuclei the magnetic hyperfine splittings were investigated in external magnetic fieldsB 0=0.5...4.2 kG. The zero-field splitting were measured as 268.9(2)MHz and 147.3(3)MHz for109InFe and110InFe, respectively. With the known hyperfine fieldB HF(InFe)=?286.6(5) kG the nuclearg-factors are deduced asg(109In)=1.231(3) andg(110In)=0.674(2). Our result for109In shows that theπ g 9/2 g-factors vary by only ~0.1% betweenA=109 and 115. For the |π 9/2 vd 5/27+ of110In the additivity relation of magnetic moments is fulfilled to on accuracy of 0.3(3)%.  相似文献   

2.
The hyperfine interaction of183OsFe has been studied with nuclear magnetic resonance on oriented nuclei after recoil implantation. Taking into account the resonance displacement due to quadrupole interaction |gμ N H HF/h|=149.9(2) MHz has been found. WithH HF=?1,115(20) kG theg-factor of the 9/2+ [624] ground state of183Os is deduced asg=(?)0.176(3).  相似文献   

3.
Theg-factors of the four lowest states of the ground state rotational band of158Dy have been determined asg(2 1 + )=+0.362(23),g(4 1 su+ )=+0.340(20),g(6 1 su+ )=+0.207(36) andg(8 1 su+ )=+0.21(11). Theg-factors of the 2+ and 4+ states were measured by the IPAC method with radioactive samples of 2.4 h158Er in external magnetic fields. To investigate the higher states, for the first time an on-line γ—γ IPAC experiment was performed with the reaction156Gd(α, 2n)158Dy by use of the static hyperfine field of DyGd.  相似文献   

4.
Theg factors of the first excited 2+ levels in the neutron-rich nuclei102Mo and104Mo have been studied through the measurement of the perturbed angular correlations for theγ-γ cascades between the 0 2 + -2 1 + -0 1 + level sequences. The results of g=0.42±0.07 for102Mo and ofg= ?0.11 +0.12 for104Mo agree with the prediction of the vibrational-rotational model. In terms of IBA, with the assumption ofN π=3 for the Mo isotopes which takes into consideration a two particle, two-hole excitation across the Z=40 subshell, the proton-bosong factor is deduced to beg π=1.00±0.23. It is shown that this value provides evidence for subshell effects in100Zr.  相似文献   

5.
At external magnetic fields between 1.3 and 22.5 kG the integral αγ-angular correlations of theO +(α)2+(γ)O + cascades from the ground states of228Th and224Ra respectively implanted into iron and aluminum lattices have been studied. The data were analyzed assuming different additional time dependent and static perturbations. The rotation of the angular correlation for Ra in Al proved independent of these assumptions. Therefore ag-factor of the 84.4 keV 2+ state in224Rag=0.46 (11) could be derived. Although static electric interactions seem the most probable cause for the attenuations observed for Ra and Rn implanted into Fe it was found that the two parameter Abragam and Pound theory better reproduces the data than the one parameter static perturbations. Therefore the hyperfine fields experienced by Ra and Rn in Fe were derived using Abragam and Pound theory to beH HF(RaFe)=?127(31) kG andH HF(RnFe)=1095 kG.  相似文献   

6.
The hyperfine interaction of192Ir nuclei as dilute impurities in Fe and Ni has been investigated with NMR on oriented nuclei. With the use of highly dilute and pure alloys the line widths could be reduced so far that the quadrupole splitting of192IrFe and192IrNi could be resolved. Taking hyperfine anomalies into account the ground state nuclear moments of192Ir are deduced as |μ|=1.924(10)μ N andQ=2.36(ll) b. The hyperfine field of IrNi was investigated as a function of the Ir concentrationc between 0.01 at % and 5 at %. The dependence ofH HF onc was found to be significantly smaller than that reported from Mössbauer effect measurements. Forc=0.01 at %H HF=?454.7(2.3)kG is deduced. The resonance shift with an external magnetic field has been studied precisely, yieldingK=0.012(23) andK=0.026(12) for the Knight-shift of192Ir in Fe and Ni, respectively.  相似文献   

7.
The ground state nuclear moments of186Ir (j π=5(+)) have been determined with NMR on oriented186Ir in Ni as |μ|=3.80 ?0.02 +0.12 μ n andQ=?3.00 (15)b. The quadrupole moment is consistent with an anamolousj π K=5+0 or 5+1 ground state configuration. The explanation of the magnetic moment in terms of pure 5+0 or 5+1 configurations would require a high collectiveg R-factor ofg R≧0.76. On the other hand the magnetic moment can be explained with a “normal”g R and a mixed ground state configuration.  相似文献   

8.
The hyperfine interaction of194Ir (j π =1?;T 1/2=19.4 h) in Fe and Ni has been investigated with the technique of nuclear magnetic resonance on oriented nuclei. For both systems the electronic-orbital-momentum induced electric quadrupole splitting could be resolved. The magnetic and electric hyperfine splitting frequencies,v M N B HF/h¦ andv Q =e 2 qQ/h, respectively, were measured as:194IrFe:v m =408.54 (23) MHz;v q =?2.47(20) MHz;194IrNi:v M =135.24(5) MHz;v q =?1.23 (3) MHz. Taking into account a 3% uncertainty arising from hyperfine anomalies theg-factor is deduced as ¦g¦=0.39 (1). The electric quadrupole moment,Q=+0.352 (18)b, is slightly smaller than expected from the known systematics of deformation parameters in this mass region.  相似文献   

9.
Theg-factors of the 2 1 + and 4 1 + states in198,200,202Hg were simultaneously measured by means of the transient-field perturbed angular correlation method in Coulomb excitation using multi-isotopic targets and thin polarized Gd foils as ferromagnetic host. Theg(2 1 + ) andg(4 1 + ) were found identical within errors in198, 200Hg, while in200Hg lowerg-factor values have been determined. The experimentalg-factors were compared with the predictions of the pairing-plus-quadrupole, dynamical deformation and interacting boson models.  相似文献   

10.
The nuclear Larmor precession has been observed for the 2+, 4+ and 6+ rotational states of184W in the hyperfine field of WFe by application of the TDPAC and the IPAC techniques. A carrier free radioactive source of184m Re alloyed with high purity iron was used for all three measurements. From the Larmor precession observed in the 2+ state by TDPACω L = 944(15) MHz and the knowng-factor the hyperfine fieldB 300 K hf (WFe)=?69.6(27)T was derived. The deviation from the result of a spin echo experiment with183WFe extrapolated to room temperature may be caused by the Bohr-Weisskopf effect (hyperfine anomaly). IPAC measurements with the same sample polarized in an external magnetic field of 1.6T gave for the 4+ and 6+ rotational states: ω L τ(4+)=0.0609(22) andω L τ(6+)=0.00735(102). By use of experimentalB(E2)-values theg R -factors were derived asg R (4+)=+0.276(26) andg R (6+)=+0.281(45). The directional correlation of the 537?384 keVγ-γ cascade has been analysed in terms of anE1/M2/E3 mixture for theK-forbidden 537keV transition. We obtained the mixing ratiosδ(M2/E1)=±0.086(16),δ(E3/E1)=?0.028(5) with the sign convention of Krane and Steffen.  相似文献   

11.
The followingg-factors have been derived from time integral measurements of γ-γ angular correlations in the static magnetic hyperfine field of magnetized gadolinium metal probes:156Gd:g(4 1 + )=+0.310(19)g(6 1 + )=+0.25(21)g(4 3 + , 1511 keV)=+0.809(27)158Gd:g(4 1 + )=+0.409(15). The 5.35d 156Tb sources were produced by the reaction156Gd(d, 2n)156Tb in our cyclotron. A carrier-free 150y 158Tb source was obtained from ISOLDE/CERN. In comparison with the precisely knowng-factors of the 2 1 + states,g(2 1 su+ ,156Gd) =+0.386(4) andg(2 1 + ,158Gd)=0.381(4), we observe a large reduction for the156Gd 4 1 + state whereasg increases slightly for158Gd. The half-life of the 4 1 + state of158Gd was remeasured as158Gd:T 1/2(4 1 + )=148(2) ps. A measurement of the rotation in the 4 3 + state of156Gd in external magnetic fields of various strengths up toB ext=9.5 T did not confirm the anomalous dependence of the magnetic hyperfine field in gadolinium metal on the external field, which has been reported by Persson et al. [29].  相似文献   

12.
Theg-factor of the 21 + state of192Pt has been measured by the IPAC technique in an external magnetic field as:g(21 +,192Pt)=+0.287(17). An additional IPAC experiment with an192IrFe sample was performed with the same level in order to investigate the hyperfine field. The result:ω L τ(21 +,192PtFe)=0.1115(9) gives the hyperfine field:B hf 4.2k (PtFe)=126.8(71) T. The result of an LTNO experiment with the same level is compatible with the assumption that 100% of the192Ir atoms were on unique sites.  相似文献   

13.
14.
The hfs in the 72 P 3/2-state of133Cs has been investigated by optical double resonance in a strong magnetic field. From the positions of the magnetic dipole transitions Δm j =± 1, Δm i =0 the magnetic hfs coupling con slanta (72 P 3/2)=16.591(25) MHz and theg j -factorg j (72 P 3/2)=1.33410(15) could be derived. Contrarily to recent measurements,g j agrees well with the value calculated from the Lande formula.  相似文献   

15.
The properties of ferromagnetic Gd as a host for IMPAC measurements have been investigated. The transient and internal magnetic fields at Cd, Nd, Sm, Dy, Er, Yb and Hf nuclei recoil implanted into polarized Gd at 80 K have been studied by the IMPAC technique. All available experimental transient field data for Gd have been analysed in the framework of the Lindhard-Winther theory. Empirical values of the parametersv p andC ion C atom have been deduced which give good agreement between experiments and theory. Internal magnetic fields at rare-earth nuclei in magnetized Gd at 80 K have been deduced. The results areH h.f. (NdGd)=?1370±440 kG,H h.f.(SmGd)=?1440±120 kG,H h.f.(DyGd)=1410±400 kG,H h.f.(ErGd)=2310±420 kG andH h.f.(YbGd)=?216±32 kG. The signs of these fields are, except for Yb which is in a 2+ ionic state, consistent with a ferromagnetic coupling between the 4f spins of the implanted ion and the Gd host. The deduced internal field at Hf in Gd is ?440±90 kG. The observed time-dependent interactions for rare-earth nuclei in ferromagnetic Gd are consistent with the Abragam-Pound theory. For the Cd isotopes,g-factors of the first 2+ states were deduced from the experiments. The results areg(110Cd)=0.49±0.11,g(114Cd)=0.34±0.09 andg(116Cd)=0.41±0.11. The use of transient magnetic fields forg-factor measurements on high-spin rotational states is discussed.  相似文献   

16.
Using the reaction138Ba(α,2n)140Ce the magnetic moment of the 10 1 + isomer atE x =3714.7 keV in theN=82 nucleus140Ce has been determined by means of the TDPAD method toμ=+10.3(4)μ N . Measuredg-factors in140Ce are compared to calculations within the shell model with configuration mixing. For the 10 1 + isomer in140Ce the four proton configuration π(1g 7 2/2 ,2d 5 2/2 ) has been found to be dominant. From theg-factor measurement strong contributions of multiparticle excitations to thegp2d 3/2,π3s 1 2 or π1h 11 2 shells and admixtures of neutron excitations to the wave function of the 10 1 + state could be excluded. The strongE1γ-branch of the deexcitation of the 10 1 + isomer in140Ce can be explained by means of small admixtures of configurations which contain the outer subshell excitationsπ2f 7/2 andπ1h 9/2. On this basisE1 transitions experimentally observed in theN=82 nuclei140Ce,141Pr and145Eu may be understood.  相似文献   

17.
The time differential perturbed angular distribution method (PAD) was used to measure theg-factor and the electric quadrupole interaction in a Cd single crystal for thet 1/2=140 ns,I π=7/2+ isomer in125Xe. Theg-factor isg=+0.264(10) and the quadrupole coupling constante 2 Qq/h=122.1 (6) MHz at 552 K. The lifetime of theI π=11/2+ state was measured to beτ=11.3 (1.1) ps by the recoil distance method (RDM). From an analysis of the spectroscopic data using the triaxial-rotor-plus-particle (TRPP) model the quadrupole moment of the 7/2+ isomer is deduced to beQ=1.40 (15) b yielding an electric field gradient (efg)eq=3.6(4)·1017 V/cm2 for XeCd.  相似文献   

18.
198,200Po have been studied by in beam γ-spectroscopy with the182,184W(20Ne,4n) reaction at 105 to 112 MeV. Both nuclei exhibit 8+, 11?, and 12+ isomers for which lifetimes andg-factors have been measured, that determine their single particle structure. The a priori highly hindered (πh 9/2 i 13/211?→πh 9 2/2 8+)E3-transition becomes with 25 Weisskopf units very strong in198Po suggesting that octupole vibrations or deformations are important in this region of nuclei.  相似文献   

19.
The gyromagnetic ratios of levels up to the 10 1 + in the ground-state band and of the 2 2 + state in theγ-band of166Er were simultaneously determined experimentally by means of the thin-foil, perturbedγ-ray angular distribution technique utilizing the transient hyperfine field manifest at nuclei of Er ions rapidly traversing polarized Fe. Beams of 220- and 160-MeV58Ni projectiles were used to Coulomb excite the levels of interest. The present results are compared with the spin-dependencies ofg-factors of levels in the ground-band predicted by recent cranked Hartree-Fock-Bogoliubov calculations and with interacting boson model expectations which includeg-boson effects.  相似文献   

20.
From (p, xn) in-beamγ-ray and electron measurements aT 1/2=235(14) ns isomer at 720 keV was identified in 63 148 Eu85 and the levels populated in its decay have been characterized. The results determineI π=9+ for the isomeric state, and we assign it as the (πh 11/2 j 0 ?2 ν f 7 2/3 )9+ shell model state, analogous to the configuration of the 235 μs isomer in 63 146 Eu83.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号