首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
In III-V and II-VI semiconductors, certain nominally electron-donating impurities do not release electrons but instead form deep electron-traps known as "DX centers." While in these compounds, such traps occur only after the introduction of foreign impurity atoms, we find from first-principles calculations that in ternary I-III-VI2 chalcopyrites like CuInSe2 and CuGaSe2, DX-like centers can develop without the presence of any extrinsic impurities. These intrinsic DX centers are suggested as a cause of the difficulties to maintain high efficiencies in CuInSe2-based thin-film solar-cells when the band gap is increased by addition of Ga.  相似文献   

5.
6.
Abstract

The DX center, the lowest energy state of the donor in AIGaAs with x < 0.22, is responsible for the reduced conductivity as well as the persistent photoconductivity observed in this material at low temperature. Extensive studies of the properties of this deep level in Si-doped AIGaAs are reviewed here. Data are presented showing that the characteristics of the DX center remain essentially unchanged when it is resonant with the conduction band (x < 0.22) and that, independent of other compensation mechanisms, the DX center therefore limits the free carrier concentration in Si-doped GaAs to a maximum of about 2 × 1019 cm?3. Recent measurements suggesting that the lattice relaxation involves the motion of the Si atom from the substitutional site toward an interstitial site are also presented. Evidence for the negative U model, that the DX level is the two electron state of the substitutional donor, is discussed.  相似文献   

7.
A number of experimental and theoretical studies indicate that DX centers in GaAs, its alloys and other III–V semiconductors have negative U properties. Using far infrared localized vibrational mode (LVM) spectroscopy of Si donors in GaAs under large hydrostatic pressure in a diamond anvil cell we have discovered an LVM of the Si DX center. From the ratio of the LVM absorption lines of SiGa and SiDX and the compensation in our GaAs samples, we show unambiguously that two electrons are trapped when the ionized shallow Si donors transform into negatively charged DX centers, in full agreement with the negative U model.Dedicated to H.-J. Queisser on the occasion of his 60th birthday  相似文献   

8.
The degree of compensation and ionization energy of two-electron DX centers in CdF2: In and CdF2: Ga semiconductors are determined by studying the statistical distribution of electrons localized on impurity levels. The sharp temperature dependence of the concentration of neutral donors observed in CdF2: Ga over the temperature range T = 250–400 K is explained by a high compensation degree, K ≥ 0.996. Thus, all Ga ions introduced into a CdF2 crystal lattice during crystal growth form shallow donor levels. However, the concentration of Ga ions that can form bistable DX centers is rather low and is close to the concentration of electrons injected into the crystal during additive coloring. In CdF2: In crystals, the degree of compensation is smaller than that in CdF2: Ga but is sufficiently high and the number of bistable DX centers is not limited. It is concluded that an extremely narrow impurity band forms in the CdF2: Ga semiconductor. For a total charged-impurity concentration of ~1020 cm?3, the width of the impurity band in CdF2: Ga is not likely to exceed ~0.02 eV.  相似文献   

9.
10.
Group-III impurities in the wide-gap ionic crystal CdF2 are examined. After being heated in a reducing atmosphere, crystals with these impurities acquire semiconductor properties, which are determined by electrons bound in hydrogen-like orbitals near an impurity. Besides these donor states, nontransition impurities form “deep” states accompanied by strong lattice relaxation, i.e. they are strongly shifted along the configuration coordinate. These states are a complete analog of DX centers in covalent and ionic-covalent semiconductors. The difference of the behavior of nontransition impurities from that of transition and rare-earth impurities is analyzed. This difference is attributed to the character of the filling of their valence shells by electrons. A deep, multilevel analogy is drawn between the properties of deep centers in typical semiconductors with an appreciable fraction of a covalent bond component and in predominantly ionic crystal CdF2 with semiconductor properties. Fiz. Tverd. Tela (St. Petersburg) 39, 1050–1055 (June 1997)  相似文献   

11.
12.
Abstract

We report on activated capture and emission experiments obtained under hydrostatic pressure. The observed structures in the thermostimulated capture curves are interpreted as a competition between capture and emission from the different configurations of the DX center, which are related to the local environment of the Si atom. The analysis of the capture kinetic experiments supports the hypothesis of the negative charge state of the DX center.  相似文献   

13.
AlGaAs∶Sn中DX中心电子俘获势垒的精细结构   总被引:1,自引:0,他引:1       下载免费PDF全文
肖细凤  康俊勇 《物理学报》2002,51(1):138-142
采用定电容电压法,测量了n型Al026Ga074As∶Sn中DX中心电子热俘获瞬态,以及不同俘获时间后的电子热发射瞬态;并对瞬态数据进行数值Laplace变换,得到其Laplace缺陷谱(LDS).通过分析LDS谱,确定了电子热俘获和热发射LDS谱之间的对应关系,从而得到热俘获系数对温度依赖关系,以及与Sn相关的DX中心部分电子热俘获势垒的精细结构;通过第一原理赝势法计算表明,Sn附近的AlGa原子的不同配置是电子热俘获势垒精细结构产生的主要原因  相似文献   

14.
肖细凤  康俊勇 《物理学报》2002,51(1):138-142
采用定电容电压法,测量了n型Al0.26Ga0.74As:Sn中DX中心电子热俘获瞬态,以及不同俘获时间后的电子热发射瞬态;并对瞬态数据进行数值Laplace变换,得到其Laplace缺陷谱(LDS)。通过分析LDS谱,确定了电子热俘获和热发射LDS谱之间的对应关系,从而得到热俘获系数对温度依赖关系,以及与Sn相关的DX中心部分电子热俘获势垒的精细结构;通过第一原理赝势法计算表明,Sn附近的Al/Ga原子的不同配置是电子热俘获势垒精细结构产生的主要原因。  相似文献   

15.
A scheme for cascade laser based on optical transitions between resonant states of shallow impurities in selectively doped superlattices is discussed. The inverse population mechanism is provided by the possibility of varying the lifetimes of the working states on the basis of hybridization of subbands with spatially separated wave functions. The conditions in which the ground state of an impurity in one of the quantum wells is close to the bottom of the subband in the neighboring well are analyzed.  相似文献   

16.
T. Suski 《高压研究》2013,33(1-2):389-407
Abstract

The presented paper is a review of some interesting phenomena characteristic for the DX center — a metastable donor in GaAs and AlGaAs. We concentrate on a presentation of microscopic models of the DX centers and their consequences. We point out some controversies concerning the nature of this donor impurity and the profits resulting from the wide use of pressure methods in resolving these controversies.  相似文献   

17.
For the first time, research on the unique galvanomagnetic properties of the hole gas in the channels of selectively doped CVD Ge-Ge1−XSiX (X≤0, 2) superlattices with strained Ge layers was carried out. We have obtained a high value of the hole mobility 1.5 × 104 cm2/V s (T = 4, 2 K) at a hole concentrations of (1–5) × 1017 cm−3 in SLs channels. It is shown that the main contribution into the longitudinal conductivity of strained Ge-Ge1−XSiX SL due to light hole band splitting under the strains in Ge layers.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号