首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The nano-TiO2 electrode with a p-n homojunction device was designed and fabricated by coating of the Fe3+-doped TiO2 (p-type) film on top of the nano-TiO2 (n-type) film. These films were prepared from synthesized sol-gel TiO2 samples which were verified as anatase with nano-size particles. The semiconductor characteristics of the p-type and n-type films were demonstrated by current-voltage (I-V) measurements. Results show that the rectifying curves of undoped TiO2 and Fe3+-doped TiO2 sample films were observed from the I-V data illustration for both the n-type and p-type films. In addition, the shapes of the rectifying curves were influenced by the fabrication conditions of the sample films, such as the doping concentration of the metal ions, and thermal treatments. Moreover, the p-n homojunction films heating at different temperatures were produced and analyzed by the I-V measurements. From the I-V data analysis, the rectifying current of this p-n junction diode has a 10 mA order higher than the current of the n-type film. The p-n homojunction TiO2 electrode demonstrated greater performance of electronic properties than the n-type TiO2 electrode.  相似文献   

2.
In this study, nano-TiO2 thin film electrode and solar cell have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible absorption spectra, contact angle, X-ray photoelectron spectroscopy (XPS), and current-voltage characteristics analyses. X-ray diffraction patterns show that the best sintering temperature of a nano-TiO2 film is 600 °C, at which TiO2 anatase phase forms best and the particle size of 8-10 nm can be obtained. The SEM images of a nano-TiO2 thin film show that the surface of the film is smooth and porous, and the thickness of the nano-TiO2 film is 4 μm. The measurements of contact angle between nano-TiO2 film and deionized water (DI water) reveal that the nano-TiO2 film is super-hydrophilic when solarized under ultraviolet. The electrode of dye-sensitized solar cell is used as a free-base porphyrin with carboxyl group, 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) as the sensitizer to adsorb onto the TiO2 thin film. From the results of ultraviolet-visible absorption spectra and XPS analyses of the electrode, the effects of nano-TiO2 particles’ addition to the electrode of dye-sensitized solar cell can improve the absorption of visible light (400-700 nm) and increase electrons transferred from TCPP to the conduction band of TiO2, resulting in the enhancement of efficiency for dye-sensitized solar cells.  相似文献   

3.
In this research, dye-sensitized solar cells based on TiO2 micro-pillars fabricated by inductive couple plasma etcher were investigated by analyses of X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle, ultraviolet-visible absorption spectra (UV-vis), and current-voltage characteristics. X-ray diffraction patterns show that the TiO2 anatase phase forms while sintering at 450 °C for 30 min. The SEM images reveal that the diameter and height of TiO2 micro-pillars are about 3 and 0.8 μm, respectively. The measurements of contact angle between TiO2 micro-pillars and deionized water (DI water) reveal that the TiO2 micro-pillars is super-hydrophilic while annealed at 450 °C for 30 min.The absorption spectrum of TiO2 micro-pillars is better than TiO2 thin film and can be widely improved in visible region with N3 dye adsorbed. The results of current-voltage (I-V) characteristics analysis reveal that dye-sensitized solar cell with TiO2 micro-pillars electrode has better I-V characteristics and efficiency than TiO2 film electrodes. This result may be due to the annealed TiO2 micro-pillars applied on the electrode of dye-sensitized solar cell can increase the contact area between TiO2 and dye, resulting in the enhancement of I-V characteristics and efficiency for dye-sensitized solar cell.  相似文献   

4.
Erbium-doped tin dioxide (SnO2:Er3+) was obtained by the sol–gel method. Spectroscopic properties of the SnO2:Er3+ are analyzed from the Judd–Ofelt (JO) theory. The JO model has been applied to absorption intensities of Er3+ (4f11) transitions to establish the so-called Judd–Ofelt intensity parameters: Ω2, Ω4, and Ω6. With the weak spectroscopic quality factors Ω46, we expect a relatively prominent infrared laser emission. The intensity parameters are used to determine the spontaneous emission probabilities of some relevant transitions, the branching ratios, and the radiative lifetimes of several excited states of Er3+. The emission cross section (1.31×10-20 cm2) is evaluated at 1.54 μm and was found to be relatively high compared to that of erbium in other systems. Efficient green and red up-conversion luminescence were observed, at room temperature, using a 798-nm excitation wavelength. The green up-conversion emission is mainly due to the excited state absorption from 4 I 11/2, which populates the 4 F 3/2,5/2 states. The red up-conversion emission is due to the energy transfer process described by Er3+ (4I13/2)+Er3+(4I11/2)→Er3+(4F9/2)+Er3+ (4 I 15/2) and the cross-relaxation process. The efficient visible up-conversion and infrared luminescence indicate that Er3+-doped sol–gel SnO2 is a promising laser and amplifier material. PACS 71.20.Eh; 74.25.Gz; 78.55.-m  相似文献   

5.
The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10−6 S cm−1 and this value was increased to 7.43×10−5 S cm−1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.  相似文献   

6.
Stannic oxide (SnO2) nanowires have been prepared by Chemical vapor deposition (CVD). The low-temperature transport properties of a single SnO2 nanowire have been studied. It is found that the transport of the electrons in the nanowires is dominated by the Efros-Shklovskii variable-range hopping (ES-VRH) process due to the enhanced Coulomb interaction in this semiconducting nanowire. The temperature dependence of the resistance follows the relation lnRT−1/2. On the I-V and dI/dV curves of the nanowire a Coulomb gap-like structure at low temperatures appears.  相似文献   

7.
Alpha-decay properties of the neutron-deficient isotope 185Pb were studied at the PSB-ISOLDE (CERN) on-line mass separator using the resonance ionisation laser ion source (RILIS). The nuclei of interest were produced in a 1.4 GeV proton-induced spallation reaction of a uranium graphite target. In contrast to previous studies, two α-decaying isomeric states were identified in 185Pb. The relative production of the isomers, monitored by their α-counting rates, could be significantly changed when a narrow-bandwidth laser at the RILIS setup was used to scan through the atomic hyperfine structure. Based on the atomic hyperfine structure measurements, along with the systematics for heavier odd-mass lead isotopes, the spin and the parity of these states were interpreted as 3/2- and 13/2+ and their nuclear magnetic moments were deduced. The α-decay energy and half-life value for the I π = 13/2+ isomer are E α = 6408(5) keV, T 1/2 = 4.3(2) s, respectively; while for the I π = 3/2- isomer ( T 1/2 = 6.3(4) s) two α-decays with E α1 = 6288(5) keV, I α1 = 56(2)% and E α2 = 6486(5) keV, I α2 = 44(2)% were observed. By observing prompt α-γ coincidences new information on the low-lying states in the daughter isotope 181Hg was obtained. Received: 7 February 2002 / Accepted: 19 February 2002  相似文献   

8.
Pionium ( π + π - bound state) lifetime is measured with improved precision with respect to earlier work, and the ππ s-wave scattering length difference between I = 0 and I = 2 amplitudes | a 0 - a 2| is determined to 5% precision.  相似文献   

9.
The effect of different compositions (in weight percent) of ethylene carbonate (EC) and propylene carbonate (PC) containing iodide/triiodide redox electrolyte on the photoelectrochemical performance of N719-sensitized nanocrystalline TiO2 solar cell was studied. The cells consisted of 0.6 M 1-hexyl-2,3-dimethylimidazolium iodide, 0.1 M LiI, 0.05 M I2 and 0.5 M 4-tert-butylpyridine in different compositions such as 1:1, 1:2, and 2:1 wt% of EC and PC. In 1:1 wt% of EC and PC containing redox electrolyte, short circuit photocurrent density (J sc) increased and open circuit voltage (V oc) decreased. But in 1:2 and 2:1 wt% of EC and PC containing redox electrolytes, V oc increased and J sc decreased but fill factor remained relatively constant. Dye-sensitized solar cells (DSSCs) prepared using these electrolytes give a short circuit photocurrent densities of 16.86, 12.71, and 12.09 mA/cm2; an open circuit voltages of 0.73, 0.78, and 0.79 V; fill factors of 0.63, 0.64, and 0.64; and an overall conversion efficiencies of 7.76, 6.34, and 6.13 % at an incident light of 100 mWcm?2 for 1:1, 2:1, and 1:2 wt% of EC/PC containing redox electrolytes, respectively. The incident photon-to-current conversion efficiency was higher in the case of 1:1 wt% of EC and PC containing redox electrolyte than 1:2 and 2:1 wt% of EC and PC containing redox electrolyte. It revealed that 1:1 wt% of EC and PC containing iodide/triiodide redox electrolyte is an effective electrolyte system for the fabrication of long-term stable DSSC.  相似文献   

10.
Structural and morphological characteristics of (1−x)α-Fe2O3-xSnO2 (x=0.0-1.0) nanoparticles obtained under hydrothermal conditions have been investigated by X-ray diffraction (XRD), transmission Mössbauer spectroscopy, scanning and transmission electron microscopy as well as energy dispersive X-ray analysis. On the basis of the Rietveld structure refinements of the XRD spectra at low tin concentrations, it was found that Sn4+ ions partially substitute for Fe3+ at the octahedral sites and also occupy the interstitial octahedral sites which are vacant in α-Fe2O3 corundum structure. A phase separation of α-Fe2O3 and SnO2 was observed for x≥0.4: the α-Fe2O3 structure containing tin decreases simultaneously with the increase of the SnO2 phase containing substitutional iron ions. The mean particle dimension decreases from 70 to 6 nm, as the molar fraction x increases up to x=1.0. The estimated solubility limits in the nanoparticle system (1−x)α-Fe2O3-xSnO2 synthesized under hydrothermal conditions are: x≤0.2 for Sn4+ in α-Fe2O3 and x≥0.7 for Fe3+ in SnO2.  相似文献   

11.
王利  张晓丹  杨旭  魏长春  张德坤  王广才  孙建  赵颖 《物理学报》2014,63(2):28801-028801
将自行研制的具有优异陷光能力的掺硼氧化锌用作p-i-n型非晶硅太阳电池的前电极,并且将传统商业用U型掺氟二氧化锡作为对比电极.相比表面较为平滑的掺氟二氧化锡,掺硼氧化锌表面大类金字塔的绒面结构会在本征层生长过程中触发阴影效应,形成大量的高缺陷材料区和漏电沟道,进而恶化电池的开路电压和填充因子.在不修饰掺硼氧化锌表面形貌的情况下,通过调节非晶硅本征层的沉积温度来消弱高绒度表面形貌引起的这种不利影响,对应的电池开路电压和填充因子均出现提升.在仅有铝背电极的情况下,在本征层厚度为200 nm的情况下,以掺硼氧化锌为前电极的非晶硅太阳电池转换效率达7.34%(开路电压为0.9 V,填充因子为70.1%,短路电流密度11.7 mA/cm2).  相似文献   

12.
High-spin states of 160Lu have been studied through the 144Sm( 19F, 3n) reaction. The previously known πh 11/2⊗υi 13/2 yrast band is extended from I π = 21- to 25- and a four quasiparticle band with configuration πh 11/2[523]7/2 -⊗υh 9/2[521]3/2 -⊗ (υi 13/2)2 is reported. Received: 21 May 2001 / Accepted: 19 July 2001  相似文献   

13.

Abstract  

We report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO2 semiconductor nanocrystal (quantum dot), and LaF3, presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO2 quantum dot and subsequent efficient energy transfer to Eu3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb3+–Er3+ partitioned into low phonon LaF3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.  相似文献   

14.
陈双宏  翁坚  王利军  张昌能  黄阳  姜年权  戴松元 《物理学报》2011,60(12):128404-128404
太阳电池组件由于局部电压不匹配,其中部分电池可能较长时间工作在负偏压状态下,从而影响电池光电性能.借助拉曼光谱、电化学阻抗谱和入射单色光量子效率(IPCE)等测试手段,研究长期负偏压作用下染料敏化太阳电池光电性能的变化及其影响机理.拉曼光谱研究结果表明:电池在1000 h负偏压作用下,电解质中阳离子(Li+)会向光阳极(TiO2电极)移动并嵌入TiO2薄膜中;长期负偏压作用还会致使TiO2/电解质界面阻抗增大和IPCE下降,导致电池开路电压升高和短路电流减小.通过加入苯并咪唑(BI)添加剂,经1000 h负偏压后电池的拉曼光谱实验表明,BI能在一定程度阻碍Li+的嵌入,电池具有较好的长期稳定性.不同负偏压下的老化实验进一步表明,通过加入添加剂能够使电池在长期负偏压下保持较好的稳定性. 关键词: 染料敏化 太阳电池 组件 负偏压  相似文献   

15.
The novel TiO2 nanopartilces/nanowires (TNPWs) composite with ZrO2 nanoparticles (ZNPs) shell-coated photoanodes were prepared to fabricate high-performance dye-sensitized solar cell (DSSC) based on different types of electrolytes. Hafnium oxide (HfO2) is a new and efficient blocking layer material applied over the TNPWs-ZNPs core-shell photoanode film. TiO2 nanoparticles (TNPs) and TiO2 nanowires (TNWs) were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). DSSCs were fabricated using the novel photoanodes with an organic sensitizer D149 dye and different types of electrolytes namely liquid electrolyte, ionic liquid electrolyte, solid-state electrolyte, and quasi-solid-state electrolyte. The DSSC-4 made through the novel core-shell photoanode using quasi-solid-state electrolyte showed better photocurrent efficiency (PCE) as compared to the other DSSCs. It has such photocurrent-voltage characteristics: short circuit photocurrent (Jsc)?=?19 mA/cm2, the open circuit voltage (Voc)?=?650 mV, fill factor (FF)?=?65 %, and PCE (η)?=?8.03 %. The improved performance of DSSC-4 is ascribed to the core-shell with blocking layer photoanode could increased electron transport and suppressed recombination of charge carriers at the TNPWs-ZNPs/dye/electrolyte interface.  相似文献   

16.
chemical effect on the neutral species; and (ii) a Fermi-level effect on the ionized species, because, in addition to the chemical effect, the solubility of the species also has a dependence on the semiconductor Fermi-level position. For Zn and Be in GaAs and related compounds, their diffusion process is governed by the doubly-positively-charged group III element self-interstitials (I2+ III), whose thermal equilibrium concentration, and hence also the diffusivity of Zn and Be, exhibit also a Fermi-level dependence, i.e., in proportion to p2. A heterojunction consists of a space-charge region with an electric field, in which the hole concentration is different from those in the bulk of either of the two layers forming the junction. This local hole concentration influences the local concentrations of I2+ III and of Zn- or Be-, which in turn influence the distribution of these ionized acceptor atoms. The process involves diffusion and segregation of holes, I2+ III, Zn-, or Be-, and an ionized interstitial acceptor species. The junction electric field also changes with time and position. Received: 20 August 1998/Accepted: 23 September 1998  相似文献   

17.
Nanocrystalline SnO2 thin films were deposited by simple and inexpensive chemical route. The films were characterized for their structural, morphological, wettability and electrochemical properties using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy techniques (SEM), transmission electron microscopy (TEM), contact angle measurement, and cyclic voltammetry techniques. The XRD study revealed the deposited films were nanocrystalline with tetragonal rutile structure of SnO2. The FT-IR studies confirmed the formation of SnO2 with the characteristic vibrational mode of Sn-O. The SEM studies showed formation of loosely connected agglomerates with average size of 5-10 nm as observed from TEM studies. The surface wettability showed the hydrophilic nature of SnO2 thin film (water contact angle 9°). The SnO2 showed a maximum specific capacitance of 66 F g−1 in 0.5 Na2SO4 electrolyte at 10 mV s−1 scan rate.  相似文献   

18.
This paper reports a study of the application of chemical vapor-etching (CVE) for the rear surface and in the emitter of polycrystalline silicon (pc-Si) solar cells. The CVE technique consists of exposing pc-Si wafers to a mixture of HF/HNO3. This technique is used to groove the rear surface of the pc-Si wafers for acid vapors rich in HNO3 (HNO3/HF > 1/4), in order to realize rear-buried metallic contacts (RBMC) and the formation of a porous silicon (PS) layer on the frontal surface of the cell for volume ratio of HNO3/HF = 1/7. A significant increase of the spectral response in the long wavelength range was observed when a RBMC is formed. This increase was attributed to the reduction of the effective thickness of the base of the cells and grain boundary Al gettering. The achievement of a PS layer on the emitter of the pc-Si cells passivates the surface and reduces the reflectivity. The dark I-V characteristics of pc-Si cells with emitter-based PS show an important reduction of the reverse current together with an improvement of the rectifying behaviour. The I-V characteristic under AM1.5 illumination shows an enhancement of both short circuit current density and fill factor. The internal quantum efficiency is improved, particularly in the short wavelengths region.  相似文献   

19.
We investigate the influence of the pyrazole content on the polyvinylidene fluoride (PVDF)/KI/I2 electrolytes for dye-sensitized solar cells (DSSCs). The solid polymer electrolyte films consisting of different weight percentage ratios (0 20, 30, 40, and 50 %) of pyrazole doped with PVDF/KI/I2 have been prepared by solution casting technique using N,N-dimethyl formamide (DMF) as a solvent. The as-prepared polymer electrolyte films were characterized by various techniques such as Fourier transform infrared spectroscopy (FT-IR spectroscopy), differential scanning calorimetry (DSC), X-ray diffractometer (XRD), alternate current (AC)-impedance analysis, and scanning electron microscopy (SEM). The 40 wt% pyrazole-PVDF/KI/I2 electrolyte exhibited the highest ionic conductivity value of 9.52?×?10?5 Scm?1 at room temperature. This may be due to the lower crystallinity of PVDF and higher ionic mobility of iodide ions in the electrolyte. The DSSC fabricated using this highest ion conducting electrolyte showed an enhanced power conversion efficiency of 3.30 % under an illumination of 60 mW/cm2 than that of pure PVDF/KI/I2 electrolyte (1.42 %).  相似文献   

20.
Undoped and Er3+-doped glass–ceramics of composition (100−x)SiO2–xSnO2, with x = 5 or 10 and with 0.4 or 0.8 mol% of Er3+ ions, were synthesised by thermal treatment of precursor sol–gel glasses. Structural studies were developed by X-Ray Diffraction. Wide band gap SnO2 semiconductor quantum-dots embedded in the insulator SiO2 glass are obtained. The mean radius of the SnO2 nanocrystals, ranging from 2 to 3.2 nm, is comparable to the exciton Bohr radius. The luminescence properties have been analysed as a function of sample composition and thermal treatment. The results show that Er3+ ions are partially partitioned into the nanocrystalline phase. An efficient UV excitation of the Er3+ ions by energy transfer from the SnO2 nanocrystal host is observed. The Er3+ ions located in the SnO2 nanocrystals are selectively excited by this energy transfer mechanism. On the other hand, emission from the Er3+ ions remaining in the silica glassy phase is obtained by direct excitation of these ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号