首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Piperazine and 1,2-diaminobenzene have been previously used as anchoring molecules to synthesize 3-hydroxy-4-pyridinone (3,4-HPO) tetradentate ligands affording ligands with different flexibility and coordination properties. In order to have a relatively rigid and hindered structure, a porphyrin platform was selected to anchor one or two 3,4-HPO chelating units. This platform provides an additional N4 coordination sphere and also very interesting optical properties to the synthesized conjugates. Depending on the metal ion present in the porphyrin core, conjugates with different spectroscopic properties are obtained. EPR spectroscopy has been used to characterize the copper(II) metalloporphyrins and to monitor and identify the species formed upon addition of copper(II) to solutions of two porphyrin conjugates with one and two 3,4-HPO arms. The porphyrin conjugates having two 3,4-HPO units are ligands that provide two separate binding sites with N4 and O4 coordination spheres, which allow accommodation of two metal ion centers that may be distinguished by spectroscopic methods.  相似文献   

2.
Two examples of supramolecular tetrads containing Sn(IV) porphyrin, expanded thiaporphyrins such as sapphyrin and rubyrin, and Ru(II) porphyrin assembled using non-interfering cooperative tin(IV)-oxygen and ruthenium(II)-nitrogen coordination properties are described. These are the first examples in which the expanded porphyrins are used as axial ligands. The tetrads were prepared by adopting one step as well as stepwise approaches. In a one pot approach, the mono meso-pyridyl dihydroxy Sn(IV) porphyrin, meso-hydroxyphenyl expanded thiaporphyrin, and Ru(II) porphyrin were reacted in benzene under refluxing conditions followed by column chromatographic purification on alumina to afford tetrads. In a stepwise approach, the axial bonding type of triads containing Sn(IV)porphyrin as central unit and expanded thiaporphyrins as axial ligands were synthesized first by reacting meso-pyridyl dihydroxy Sn(IV) porphyrin with meso-hydroxyphenyl expanded thiaporphyrin in benzene at refluxing temperature. In the next step, the triads were reacted with Ru(II) porphyrin under mild reaction conditions to afford tetrads in decent yields. Both methods worked efficiently and produced stable, soluble tetrads in decent yields. One-dimensional (1D) and two-dimensional (2D) NMR techniques were used to confirm the identity of these novel tetrads. Absorption and electrochemical studies indicated that the components in tetrads interact weakly and retain their individual characteristic features. The steady state photophysical studies revealed that the quantum yield of Sn(IV) porphyrin in tetrads was reduced significantly because of non-radiative decay pathways operating in these systems.  相似文献   

3.
[structure: see text] Water-soluble models of heme-protein active sites are obtained via the self-assembly of cationic porphyrins 1 and tetrasulfonato calix[4]arene 2 (K(1.2)() = 10(5) M(-)(1)). Selective binding of ligands either outside or inside the cavity of assemblies 1.2 via coordination to the zinc center has been observed. Small ligands such as 4-methylpyridine and 1-methylimidazole are encapsulated, while the bulkier caffeine is bound outside. Assemblies Co-1.2, in which the Zn porphyrin moiety has been replaced by a Co(II) porphyrin, can act as O(2) carriers.  相似文献   

4.
An ortho-dimethyl substituted meso-tetrakisarylporphyrin prefunctionalized with triflate groups was prepared in good yield from an accessible 2,6-dimethyl-4-(triflyloxy)benzaldehyde. This porphyrin is an interesting building block, which could directly be engaged in Suzuki cross-coupling reactions, to be further tetra functionalized with 3-pyridyl ligands in yields equal or above 85%. The porphyrin core of the various compounds bearing four remote coordination sites was metalated with zinc(II). The molecular structures of the starting triflate porphyrin derivative and of the zinc(II) porphyrin substituted with four 3-pyridyl groups bearing a protected alcohol were determined using X-ray crystallography.  相似文献   

5.
A new Hangman porphyrin architecture has been developed to interrogate the ligand-field dependence of photoinduced PCET versus excitation energy transfer and intersystem crossing in PZn(II)-PFe(III)-OH dyads (P = porphyrin). In this design, a hanging carboxylic acid group establishes a hydrogen-bonding network to anchor the weak-field OH- ligand in the distal site of the PFe(III)-OH acceptor, whereas the proximal site is left available to accept strong-field imidazole ligands. Thus, controlling the tertiary coordination environment gives access to the first synthetic example of a porphyrin dyad with a biologically relevant weak-field/strong-field configuration of axial ligands at the heme. Transient absorption spectroscopy has been employed to probe the fate of the initial PZn(II)-based S1 excited state, revealing rapid S1 quenching for all dyads in the presence and absence of strong-field imidazole ligands (tau = 6-50 ps). The absence of a (P*+)Zn(II) signal that would complement photoinduced PCET at the PFe(III)-OH subunit (i.e., PFe(III)-OH --> PFe(II)-OH2) shows that excitation energy transfer and intersystem crossing channels dominate the quenching, regardless of whether proximal strong field ligands are present. Moreover, this photophysical assignment is independent of the solvent dielectric constant and whether a phenylene or biphenylene spacer is used to span the two porphyrin subunits. Electronic structure calculations suggest that the structural reorganization attendant to reductive PCET at the high-spin Fe(III)-OH center imposes a severe kinetic cost that can only be alleviated by inducing a low-spin electronic configuration with two strong-field axial ligands.  相似文献   

6.
The solubility of 5,10,15,20-tetra(pyrid-3- and 4-yl)porphine isomers and their coordination compounds with d-metals in the temperature range of 298–318 K is studied. Patterns of the dissolving of porphyrin ligands and the metal complexes they form with Co(II), Cu(II), and Zn(II) in chloroform and ethanol depending on the nature of the metal and the position of the nitrogen atom in the pyridyl substituent of the porphyrin molecule are discussed. The thermodynamic parameters of dissolution are calculated for the investigated compounds.  相似文献   

7.
We describe the construction of self-assembled double-decker porphyrin arrays built up from two covalently connected trimeric Zn-porphyrin units that are joined together by metal-coordination bonds with diamine ligands. We used three different types of diamine ligands: 1,4-diaza[2.2.2]bicyclooctane (DABCO), 4,4'-bipyridine (BIPY), and 5,15-bis(4-pyridyl)-10,20-diphenylporphyrin (DPYP). The ligands act as pillars, through two axial coordination bonds with the porphyrinic Zn(II) ions, to block the planes of the porphyrin units in an almost cofacial orientation and inducing the formation of a trigonal prismatic structure. The spectroscopic and photophysical properties of the Zn-trisporphyrin component were determined as well as those of the resulting multimolecular cagelike assemblies. The double-decker assembly with DPYP as the pillars constitutes a nonameric porphyrin aggregate. Although this assembly is thermodynamically less stable than those containing DABCO or BIPY, efficient photoinduced energy transfer occurs (96% yield) from the trisporphyrin base units to the DPYP side walls. The rate of the energy-transfer process is in good agreement with that calculated for a dipole-dipole (F?rster) mechanism corrected for the unfavorable orientation geometry of the donor and the axially bound acceptor.  相似文献   

8.
A series of porphyrins substituted in one or two meso positions by diphenylphosphine oxide groups has been prepared by the palladium-catalyzed reaction of diphenylphosphine or its oxide with the corresponding bromoporphyrins. Compounds {MDPP-[P(O)Ph2]n} (M = H2, Ni, Zn; H2DPP = 5,15-diphenylporphyrin; n = 1, 2) were isolated in yields of 60-95%. The reaction is believed to proceed via the conventional oxidative addition, phosphination, and reductive elimination steps, as the stoichiometric reaction of eta(1)-palladio(II) porphyrin [PdBr(H2DPP)(dppe)] (H2DPP = 5,15-diphenylporphyrin; dppe = 1,2-bis(diphenylphosphino)ethane) with diphenylphosphine oxide also results in the desired mono-porphyrinylphosphine oxide [H2DPP-P(O)Ph2]. Attempts to isolate the tertiary phosphines failed due to their extreme air-sensitivity. Variable-temperature 1H NMR studies of [H2DPP-P(O)Ph2] revealed an intrinsic lack of symmetry, while fluorescence spectroscopy showed that the phosphine oxide group does not behave as a "heavy atom" quencher. The electron-withdrawing effect of the phosphine oxide group was confirmed by voltammetry. The ligands were characterized by multinuclear NMR and UV-visible spectroscopy, as well as mass spectrometry. Single-crystal X-ray crystallography showed that the bis(phosphine oxide) nickel(II) complex {[NiDPP-[P(O)Ph2]2} is monomeric in the solid state, with a ruffled porphyrin core and the two P=O fragments on the same side of the average plane of the molecule. On the other hand, the corresponding zinc(II) complex formed infinite chains through coordination of one Ph2PO substituent to the neighboring zinc porphyrin through an almost linear P=O...Zn unit, leaving the other Ph2PO group facing into a parallel channel filled with disordered water molecules. These new phosphine oxides are attractive ligands for supramolecular porphyrin chemistry.  相似文献   

9.
Li K  Huang G  Xu Z  Zhang M  Zeller M  Hunter AD  Chui SS  Che CM  Wong WY 《Inorganic chemistry》2007,46(12):4844-4849
We introduce the 1,2,3-tris(organylthiophenyl) group as a symmetrical, multidentate chelation link for building coordination networks. For this, zinc(II) 5,10,15,20-tetrakis[3',4',5'-tris(methylthio)phenyl]porphyrin was synthesized and integrated into a two-dimensional network via coordination with BiBr3. The coordination link exhibits an unusually complex bonding pattern, involving six S atoms from two neighboring ligands that form multiple Bi-S interactions (distances ranging from 3.08 to 3.63 A) with a dimerlike unit of Bi2Br6. The electronic interaction between the porphyrin center and the Bi2Br6 block was illustrated by the diffuse-reflectance spectrum of the network compound, in which a modest red-shifted feature at 1.8 eV was seen (while the Q-band absorption of the metalloporphyrin core continues to be dominant at 1.9 eV).  相似文献   

10.
An approach which employs pentameric porphyrin arrays as building blocks toward larger porphyrin arrays is described. Two flexible, and one relatively rigid, Ru-centered porphyrin pentamers (1-3) were synthesized and fully characterized. Their potential as building blocks toward larger porphyrin arrays has been studied via their coordination chemistry using bidentate and tetradentate ligands. DABCO (diazabicyclo[2.2.2]octane) can bind two monomeric porphyrins but was found to be too small to allow the complete formation of a 10-porphyrin array. On the other hand, titration of a larger bridging dipyridyl porphyrin ligand 17 (0.5 equiv) with 1 or 2 and tetrapyridyl ligand 18 (0.25 equiv) with 3 results in the formation of the 11-porphyrin and 21-porphyrin arrays, respectively, with the 21-porphyrin array containing porphyrins in three different metalation states. Changes in the chemical shift of the inner NH protons as well as the ortho- and meso-protons of the pyridyl groups of the porphyrin ligand clearly indicate the formation of large multiple porphyrin complexes. These studies demonstrate that by use of carefully designed building blocks and suitable bridging ligands, porphyrin arrays can be constructed with a dramatic increase in size in relatively few steps. Exploiting the fact that the strength of binding of pyridyl ligands is Ru > Zn > Ni, intra- vs intermolecular competition has been used to investigate aspects of the folding of the array. The photophysical properties of 3 are also described.  相似文献   

11.
Multiporphyrin arrays are a complex class of molecules with numerous potential applications in energy transfer, photomedicine, and light harvesting. We have developed a facile/versatile route to a class of triptycene-linked porphyrin arrays via both Suzuki and Sonogashira cross-coupling methods, which makes use of the rigid three-pronged orientation of triptycene to construct trimeric porphyrin arrays linked either in the meso or β-position with various linker groups. In order to understand the properties of these potential antenna systems and probe their potential applications, the coordination behavior of zinc(II) derivatives with mono- and bidentate N-donor ligands was investigated. Depending on ligand concentration, both one- and two-point binding was observed with a bidentate ligand. Also/in addition, different cavity sizes, obtained by the use of different linker groups, resulted in differences in the binding properties of each trimeric system.  相似文献   

12.
Ferrocene-bridged trisporphyrin (2) was synthesized by two-steps condensation of corresponding aldehydes and dipyrromethanes, and its self-assembling behavior based on the complementary coordination motif of imidazolylporphyrinatozinc(II) was investigated in conjunction with hinge-like flexibility given by freely rotating cyclopentadienyl rings of ferrocene connector. Ferrocene-bridged trisporphyrin (2) spontaneously and exclusively generated the dimeric ring (7) upon simple zinc(II) insertion, indicating that the freely rotating hinge connector favored the smallest ring formation. Taking advantage of the unique hinge-like flexibility of ferrocene, we attempted to transform the dimer ring into a mixture of porphyrin macrocycles by reorganizing the structure cleaved once by pyridine. A series of porphyrin macrocycles from trimer to decamer can be separated into its components by preparative gel permeation chromatograms. Macrocycles obtained are kept stable in the absence of coordinating solvents. On the other hand, they were easily transformed to the dimer ring in the presence of coordinating solvents such as methanol, showing that the transformation is completely reversible and can be controlled by the choice of the solvent system. A series of porphyrin macrocycles was confirmed via covalent linking of each complementary coordination dimer pair by metathesis reaction in the presence of Grubbs's catalyst. The coordination behavior of the bidentate ligands with different spacer lengths toward the dimer ring revealed that only the bidentate ligand (15) with a spacer length that matched the facing central porphyrins was selectively accommodated inside the ring. Coordination assembled flexible rings with tunable cavities and multiple coordination sites will be used as versatile hosts for a wide variety of guest molecules.  相似文献   

13.
An approach to the formation of molecular timepieces is outlined based on differentiating between rotamers in diaxial Sn(IV) porphyrin phenolates. Two models are explored in detail. The first explores how the rates of rotation of the diaxial ligands is discriminated based on steric hindrance of the two porphyrin macrocycle faces at low temperature. The second model explores a ‘stopwatch’ function based on the ligation of Ag(I) ions to a 5,15-dipyridylporphyrinato tin(IV) complex bearing 3-hydroxypyridine ligands. The complexation inhibits rotation of the axial ligand, a result, which can be reversed by precipitation of Ag(I) using tetraethylammonium bromide. X-ray crystallography has also been used to characterize two Ag(I) 5,15-dipyridylporphyrinato tin(IV)complexes. The two isoforms differ in their supramolecular organization. One structure is formed through a cofacial stack linking each porphyrin by Ag(I) coordination. The other displays a sheet-like coordination polymer structure.  相似文献   

14.
A new series of DNA binding 5,10,15-tri(N-methyl-4-pyridiniumyl)porphyrin (TrisMPyP)-platinum(II) conjugates was synthesized, in which different spacer ligands were used for appropriate coordination to platinum(II) complexes. Compound 9b exhibited in vivo antitumor activity (T/C%, 294) superior to cisplatin (T/C%, 184) against the leukemia L1210 cell line.  相似文献   

15.
Two new unsymmetrical picket-fence naphthylporphyrin ligands, 1 and 2, and several of their metalated porphyrinato complexes have been synthesized as precursor model compounds for the binuclear (Fe/Cu) cytochrome c oxidase (CcO) active site. 1 and 2 have a naphthylporphyrin superstructure that has been specifically incorporated to confer long-term configurational stability to the atropisomeric products. The two picket-fence porphyrin ligands also bear covalently linked, axially offset tris(heterocycle) coordination sites for a copper ion, much like that found in the native enzyme. Monometallic porphyrin complexes [M = Zn(II), Ni(II), Cu(II), and Fe(III)] of the pyridine-appended ligand 1 have been prepared and spectroscopically and magnetically characterized. An unusual monomeric iron(III) hydroxo porphyrin complex was isolated upon workup of the compound formed under ferrous sulfate/acetic acid reflux conditions. There is general difficulty in forming binuclear complexes of 1, which is attributed to the conformational flexibility of the benzyl ether type picket spacers. The potential of ligands such as 1 and 2 for future CcO active-site modeling studies is considered.  相似文献   

16.
Complexes of zinc porphyrin oligomers with multivalent ligands can be denatured by adding a large excess of a monodentate ligand, such as quinuclidine. We have used denaturation titrations to determine the stabilities of the complexes of a cyclic zinc-porphyrin hexamer with multidentate ligands with two to six pyridyl coordination sites. The corresponding complexes of linear porphyrin oligomers were also investigated. The results reveal that the stepwise effective molarities (EMs) for the third through sixth intramolecular coordination events with the cyclic hexamer are extremely high (EM = 10(2)-10(3) M), whereas the values for the linear porphyrin oligomers are modest (EM ≈ 0.05 M). The speciation profiles for the denaturation reactions demonstrate that intermediate species are not significantly populated and that these equilibria are well described by a highly cooperative two-state model.  相似文献   

17.
Maeda C  Shinokubo H  Osuka A 《Organic letters》2007,9(13):2493-2496
Pd-catalyzed annulation reaction of meso-hexynyl Zn(II) porphyrin with 4-amino-3-iodopyridine efficiently provides meso-3-(5-azaindolyl)-substituted Zn(II) porphyrin as a major product, which assembles to form a slipped cofacial dimer by the complementary coordination of the pyridine moiety to the Zn(II) center. 2-iodoaniline and 2-iodophenol also undergo this [3 + 2] annulation with the meso-hexynyl Zn(II) porphyrin to furnish meso-indolyl- and benzofuranyl-substituted Zn(II) porphyrins, respectively.  相似文献   

18.
A novel supramolecular strategy to prepare bidentate ligands via the assembly of functionalised monomeric ligands on a dimeric zinc(II) porphyrin template is presented; the assembled bidentate ligands show chelating behaviour and their rhodium complexes display enhanced selectivity in the hydroformylation compared to the non-template analogue.  相似文献   

19.
Platinum(II) binds to 21,23-ditelluraporphyrin forming a side-on complex, which can be easily transformed into an aromatic metallaporphyrin, that is, 21-platina-23-telluraporphyrin, with a platinacyclopentadiene unit built in the porphyrin skeleton in place of one pyrrole ring. The central platinum(II) ion with a CCNTe square-planar coordination sphere can be oxidized to platinum(IV) by chlorine, bromine, methyl iodide or allyl chloride to yield octahedral complexes. All platinatelluraporphyrins show dynamic behavior involving the platinum ion coordination sphere fluxionality and the porphyrin skeleton deformation, both in-plane and out-of-plane, as demonstrated by 1H NMR spectroscopy.  相似文献   

20.
Copper(I) can preferentially form heteroleptic complexes containing two phosphine and two nitrogen donors due to steric factors. This preference was employed to direct the self‐assembly of a porphyrin‐faced rhomboidal prism having two parallel tetrakis(4‐iminopyridyl)porphyrinatozinc(II) faces linked by eight 1,4‐bis(diphenylphosphino)benzene pillars. The coordination preferences of the CuI ions and geometries of the ligands come together to generate a slipped‐cofacial orientation of the porphyrinatozinc(II) faces. This orientation enables selective encapsulation of 3,3′‐bipyridine (bipy), which bridges the ZnII ions of the parallel porphyrins, whereas 4,4′‐bipy exhibits weaker external coordination to the porphyrin faces. Reaction with 2,2′‐bipy, by contrast, results in the displacement of the tetratopic porphyrin ligand and formation of [{(2,2′‐bipy)CuI}2(diphosphine)2]. The differing strengths of interactions of bipyridine isomers with the system allows for a hierarchy to be deciphered, whereby 4,4′‐bipy may be displaced by 3,3′‐bipy, which in turn is displaced by 2,2′‐bipy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号