首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two main drawbacks seriously restrict the synthetic value of proteases as reagents in peptide fragment coupling: (i) native proteolytic activity and, thus, risk of undesired peptide cleavage; (ii) limited enzyme specificities restricting the amino acid residues between which a peptide bond can be formed. While the latter can be overcome by the use of substrate mimetics achieving peptide bond formation at nonspecific ligation sites, the risk of proteolytic cleavage still remains and hinders the wide acceptance of this powerful strategy for peptide coupling. This paper reports on the effect of the trypsin point mutant Asp189Glu on substrate mimetic-mediated reactions. The effect of this mutation on the steady-state hydrolysis of substrate mimetics of the 4-guanidinophenyl ester type and on trypsin-specific Lys- and Arg-containing peptides was investigated. The results were confirmed by enzymatic coupling reactions using substrate mimetics as the acyl donor and specific amino acid-containing peptides as the acyl acceptor. The competition assay verifies the predicted shift in substrate preference from Lys and Arg to the substrate mimetics and, thus, from cleavage to synthesis of peptide bonds. The combination of results obtained qualifies the trypsin mutant D189E as the first substrate mimetic-specific peptide ligase.  相似文献   

2.
Short peptide substrates with high specificity toward transglutaminase (TGase) enzyme were designed, characterized, and coupled to a biocompatible polymer, allowing for rapid enzymatic cross-linking of peptide-polymer conjugates into hydrogels. Eight acyl acceptor Lys-peptide substrates and three acyl donor Gln-peptide substrates were rationally designed and synthesized. The kinetic constants of these peptides toward tissue transglutaminase were measured by enzyme assay using RP-HPLC analysis with the aid of LC-ESI/MS. Several acyl donor and acyl acceptor peptides with high specificities toward TGase were identified, including a few containing the unusual amino acid l-3,4-dihydroxylphenylalanine (DOPA), which is found in the adhesive proteins secreted by marine and freshwater mussels. Acyl donor and acyl acceptor peptides with high substrate specificities were separately coupled to branched poly(ethylene glycol) (PEG) polymer molecules. Equimolar solutions of these polymer-peptide conjugates rapidly formed hydrogels in less than 2 min in the presence of transglutaminase under physiological conditions. The use of biocompatible building blocks, their rapid solidification from a liquid precursor under physiologic conditions, and the ability to incorporate adhesive amino acid residues using biologically benign enzymatic cross-linking are advantageous properties for the use of such materials for tissue repair, drug delivery, and tissue engineering applications.  相似文献   

3.
In this contribution we describe a general synthesis concept for the in situ preparation of protease specific reactants using methyl thioesters as universal precursors. The precursor esters are readily available by standard synthesis procedures and can be used directly as reactants for protease-mediated peptide coupling reactions. Alternatively, they can serve as initial building blocks for the in situ preparation of various types of substrate mimetics. The synthesis of the latter is achieved by a one-pot spontaneous transthioesterification reaction of the parent thioester (Y-(Xaa)(n)-SMe-->Y-(Xaa)(n)-SR; R: CH(2)CH(2)COOH, CH(2)C(6)H(5), C(6)H(4)NHC(:NH)NH(2)), which proceeds efficiently in both a sequential manner and parallel to the subsequent enzymatic reaction. The resulting substrate mimetics act as efficient acyl donor components and show the typical behavior of substrate mimicry enabling irreversible reactions with originally nonspecific acyl moieties. Neither a workup of the substrate mimetic intermediate nor changes of the reaction conditions during the whole synthesis process are required. Model peptide syntheses using trypsin, alpha-chymotrypsin, and V8 protease as the biocatalysts proved the function of the approach and illustrated its synthetic value for protease-mediated reactions and the compatibility of the approach with state-of-the-art solid-phase peptide ester synthesis methods.  相似文献   

4.
Peptide mimetics are of considerable interest as bioactive agents and drugs. C-terminally modified peptide mimetics are of particular interest given the synthetic versatility of the carboxyl group and its derivatives. A general approach to C-terminally modified peptide mimetics, based on a urethane attachment strategy and amino acid t-butyl ester-based N-to-C peptide synthesis, is described. This approach is compatible with the reaction conditions generally employed for solution-phase peptide mimetic synthesis. To develop and demonstrate this approach, it was employed for the solid-phase synthesis of peptide trifluoromethyl ketones, peptide boronic acids, and peptide hydroxamic acids. The development of a versatile general approach to C-terminally modified peptides using readily available starting materials provides a basis for the combinatorial and parallel solid-phase synthesis of these peptide mimetic classes for bioactive agent screening and also provides a basis for the further development of solid-phase C-terminal functional group elaboration strategies.  相似文献   

5.
To explore the ability of the cysteine protease clostripain as a biocatalyst for the synthesis of peptide isosteres, the S'-subsite specificity of this enzyme toward unnatural substrates was investigated. First, the function of clostripain for acylating aliphatic noncyclic and cyclic amines varying in chain length and ring size was analyzed using a standard acyl donor. Additionally, this series was expanded by use of aromatic amines, amino alcohols, derivatives of non-alpha-amino carboxylic acids, and symmetric and asymmetric diamines, respectively. The results obtained give a detailed picture of the unique reactivity of clostripain toward synthetic substrates, allowing insights into the basic enzyme-substrate interactions. Furthermore, the data provide a guideline for the use of clostripain as a biocatalyst for synthesis of peptide isosteres. The study was completed by the utilization of a model substrate mimetic enabling clostripain to react with noncoded and non-amino acid-derived amines as well as nonspecific acyl moieties. The results of this study indicate that this approach may extend the application range of clostripain as a biocatalyst outside of peptide synthesis.  相似文献   

6.
The behaviour of substrate mimetics in mediating the acceptance of nonspecific acyl moieties by proteases has been investigated as a direct function of their site-specific ester leaving groups. In this contribution we report on a computational approach to rationalise this interplay and to predict the power of a potential ester moiety to act as a suitable substrate mimetic for a given enzyme by means of an automated docking procedure. Investigations with seven distinct substrate mimetics and two proteases, subtilisin and chymotrypsin, show a clear correlation between the theoretically calculated binding energies DeltaE and the specificity constants k(cat)KM(-1) obtained from parallel hydrolysis kinetic studies. These results prove the general function of the docking approach as a rational model not only in predicting the general acceptance of a substrate mimetic in a qualitative manner, but also to provide reliable information on its individual specificity towards proteases.  相似文献   

7.
Histidine‐containing peptides are valuable therapeutic agents for a treatment of neurodegenerative diseases. However, the synthesis of histidine‐containing peptides is not trivial due to the potential of imidazole sidechain of histidine to act as a nucleophile if unprotected. A peptide ligation method utilizing the imidazole sidechain of histidine has been developed. The key imidazolate intermediate that acts as an internal acyl transfer catalyst during ligation is generated by deprotonation. Transesterification with amino acids or peptides tethered with C‐terminal thioester followed by N→N acyl shifts led to the final ligated products. A range of histidine‐containing dipeptides could be synthesized in moderate to good yields via this method without protecting the imidazole sidechain. The protocol was further extended to tripeptide synthesis via a long‐range N→N acyl transfer, and tetrapeptide synthesis.  相似文献   

8.
Kinetic resolution of (R,S)-2-butanol using enzymatic synthesis of esters has been studied. (R,S)-2-Butanol is commonly found as a racemic mixture, and the products of its esterification are racemic mixtures too. This work is of great significance in the field of the enzymatic kinetic resolution due to the little information found in literature about the resolution of (R,S)-2-butanol as pure compound. So, this article is a contribution about the enzymatic resolution of (R,S)-2-butanol. The reaction here studied is the esterification/transesterification of (R,S)-2-butanol in organic media (n-hexane) using as biocatalyst the lipase Novozym 435?. The main target of this study is to analyze the influence of certain variables in this reaction. Some of these variables are acyl donor (acids and esters), concentration of substrates, enzyme/substrate ratio, and temperature. The main conclusions of this study are the positive effect of higher substrates concentration (1.5 M) and larger amount of enzyme (13.8 g mol(-1) substrate) on kinetic resolution rate but not a very noticeable effect on enantiomeric excesses. The longer the carboxylic acid chain is, the better results are obtained. Besides to achieve a satisfactory kinetic resolution, it is recommendable to select reaction times (180 min) at which the highest substrate enantiomeric excess is reached (~60%). The temperature has not an appreciable influence on the resolution in the range studied (40-60 °C). When an ester (vinyl acetate) is used as acyl donor, the resolution shows better results than when using a carboxylic acid as acyl donor (ee(s)?~90% at 90 min). Moreover, Michaelis-Menten parameters, v(max) and K(M), were determined, 0.04 mol l(-1) min(-1) and 0.41 mol l(-1), respectively.  相似文献   

9.
[reaction: see text] We present an irreversible and efficient protease-based method for peptide synthesis which occurs independently of the primary specificity of proteases and also without proteolytic side reactions. The key feature of this approach is the combination of the substrate mimetics strategy with frozen state enzymology. Model reactions catalyzed by several proteases qualify this approach as a powerful concept in the direction of a more universal application of proteases as biocatalysts for peptide ligation.  相似文献   

10.
A kinetically controlled peptide synthesis catalyzed by α-chymotrypsin was performed in frozen aqueous solution (ice, −24 °C). The yield of the peptide was significantly improved by the use of the carbamoylmethyl (Cam) ester as the acyl donor instead of the conventional ethyl ester. The peptide yield increased up to ca. 90% when N-benzyloxycarbonyl (CBZ)-Phe-OCam and H-Phe-NH2 were used as the acyl donor and nucleophile, respectively. Such an improvement of the peptide yield in ice was also observed in the coupling of other CBZ-amino acid Cam esters as acyl donors. Furthermore, this approach was applied to the synthesis of peptides containing d-amino acids. The peptides such as CBZ-d-Phe-Phe-NH2, CBZ-Phe-d-Phe-NH2 and CBZ-d-Phe-d-Phe-NH2 were also obtained in excellent to moderate yields in ice. A high diastereoselectivity towards the l–l peptide was observed when the racemic amino acid Cam ester was used as the acyl donor in ice.  相似文献   

11.
A method is disclosed for the convergent synthesis of multiply glycosylated peptides. The approach centers on a convergent technique for generating masked, complex glycopeptide-containing C-terminal acyl donors. Activation of the latent donor in situ and use directly in segment coupling with a second peptide bearing a complex carbohydrate produces a completely unprotected, bifunctional glycopeptide. The system demonstrates a minimum level of hydrolysis and epimerization at the C-terminal amino acid residue of the acyl donor during fully convergent segment coupling and is therefore a powerful tool for the synthesis of glycoproteins.  相似文献   

12.
C-Terminal peptide thioesters are key intermediates in the synthesis/semisynthesis of proteins and of cyclic peptides by native chemical ligation. They are prepared by solid-phase peptide synthesis (SPPS) or biosynthetically by protein splicing techniques. Until recently, the chemical synthesis of C-terminal alpha-thioester peptides by SPPS was largely restricted to the use of Boc/Benzyl chemistry due to the poor stability of the thioester bond to the basic conditions required for the deprotection of the N(alpha)-Fmoc group. In the present work, we describe a new method for the SPPS of C-terminal thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. This step converts the acyl hydrazine group into a highly reactive acyl diazene intermediate which reacts with an alpha-amino acid alkyl thioester (H-AA-SR) to yield the corresponding peptide alpha-thioester in good yield. This method has been successfully used to prepare a variety of peptide thioesters, cyclic peptides, and a fully functional Src homology 3 (SH3) protein domain.  相似文献   

13.
A new S9 family aminopeptidase derived from the actinobacterial thermophile Acidothermus cellulolyticus was cloned and engineered into a transaminopeptidase by site-directed mutagenesis of catalytic Ser(491) into Cys. The engineered biocatalyst, designated aminolysin-A, can catalyze the formation of peptide bonds to give linear homo-oligopeptides, hetero-dipeptides, and cyclic dipeptides using cost-effective substrates in a one-pot reaction. Aminolysin-A can recognize several C-terminal-modified amino acids, including the l- and d-forms, as acyl donors as well as free amines, including amino acids and puromycin aminonucleoside, as acyl acceptors. The absence of amino acid esters prevents the formation of peptides; therefore, the reaction mechanism involves aminolysis and not a reverse reaction of hydrolysis. The aminolysin system will be a beneficial tool for the preparation of structurally diverse peptide mimetics by a simple approach.  相似文献   

14.
Chemical ligations to form native peptides from N→N acyl migrations in Trp‐containing peptides via 10‐ to 18‐membered cyclic transition states are described. In this study, a statistical, predictive model that uses an extensive synthetic and computational approach to rationalize the chemical ligation is reported. N→N acyl migrations that form longer native peptides without the use of Cys/Ser/Tyr residues or an auxiliary group at the ligation site were achieved. The feasibility of these traceless chemical ligations is supported by the N?C bond distance in N‐acyl isopeptides. The intramolecular nature of the chemical ligations is justified by using competitive experiments and theoretical calculations.  相似文献   

15.
Solid-phase peptide synthesis in the N-to-C direction, opposite to the classical C-to-N direction of peptide synthesis, provides the synthetically versatile C-terminal carboxyl group for further modification into C-terminally modified peptide mimetics. These are of general interest as potential bioactive agents, particularly as protease inhibitors. Elaboration of peptide mimetics on the solid-phase would facilitate synthesis of peptide mimetic combinatorial libraries. This report describes an effective strategy for solid-phase inverse peptide synthesis based on readily available amino acid tert-butyl esters. The potential of this approach for peptide mimetic synthesis is demonstrated by the solid-phase synthesis of two peptide trifluoromethylketones.  相似文献   

16.
We present a protease-based method for the coupling of non-coded and non-amino-acid-derived amines with carboxy components. The key feature of this approach is the combination of the substrate-mimetic strategy with the ability of the cysteine protease clostripain to accept a wide spectrum of amines. Firstly, we tested the use of the 4-guanidinophenyl ester leaving group to mediate acceptance of non-coded and non-amino-acid-derived acyl residues. This employed beta-amino acid and simple carboxylic acid moieties as acyl donors, and several amino acid and peptide units as acyl acceptors. The study was completed by the use of non-amino-acid-derived acyl acceptors comprising simple amines, amino alcohols, and diamines. The results indicate that the approach presented is a useful strategy for the synthesis of peptide isosteres, peptide analogues, and organic amides. These last open a new range of synthetic applications of proteases completely beyond peptide synthesis, achieving efficient and selective acylations of non-amino-acid-derived amines under extraordinarily mild reaction conditions.  相似文献   

17.
An efficient new strategy for the synthesis of peptide and glycopeptide thioesters is described. The method relies on the side-chain immobilization of a variety of Fmoc-amino acids, protected at their C-termini, on solid supports. Once anchored, peptides were constructed using solid-phase peptide synthesis according to the Fmoc protocol. After unmasking the C-terminal carboxylate, either thiols or amino acid thioesters were coupled to afford, after cleavage, peptide and glycopeptide thioesters in high yields. Using this method a significant proportion of the proteinogenic amino acids could be incorporated as C-terminal amino acid residues, therefore providing access to a large number of potential targets that can serve as acyl donors in subsequent ligation reactions. The utility of this methodology was exemplified in the synthesis of a 28 amino acid glycopeptide thioester, which was further elaborated to an N-terminal fragment of the glycoprotein erythropoietin (EPO) by native chemical ligation.  相似文献   

18.
O‐Acyl isopeptides, in which the N‐acyl linkage on the hydroxyamino acid residue (e.g., Ser and Thr) is replaced with an O‐acyl linkage, generally possess superior water‐solubility to their corresponding native peptides, as well as other distinct physicochemical properties. In addition, O‐acyl isopeptides can be rapidly converted into their corresponding native peptide under neutral aqueous conditions through an O‐to‐N acyl migration. By exploiting these characteristics, researchers have applied the O‐acyl isopeptide method to various peptide‐synthesis fields, such as the synthesis of aggregative peptides and convergent peptide synthesis. This O‐acyl‐isopeptide approach also serves as a means to control the biological function of the peptide in question. Herein, we report the synthesis of O‐acyl isopeptides and some of their applications.  相似文献   

19.
Although proteases are capable of synthesizing peptide bonds, they are not proficient at peptide fragment ligation. Further manipulations are needed to shift the native enzyme activity from the cleavage to the synthesis of peptides. This account reports on the synthetic potential of nonactivatable trypsinogen and zymogen-like enzymes designed to minimize proteolytic side reactions during peptide synthesis.  相似文献   

20.
Employing soluble denatured protein substrates and their derivatives, the proteolytic activity of rat cathepsin H was investigated. The enzyme showed aminopeptidase activity which sequentially released amino acid from the N-terminal of the substrate. The aminopeptidase activity did not act on N alpha-acetylated peptides and showed moderate ionic-strength dependence when methionyl-methylcoumarylamide was employed as a substrate. These results indicate that the activity essentially requires an N-terminal free amino group of the substrate and recognizes it electrostatically to some extent. On the other hand, the enzyme was also indicated to exhibit endopeptidase activity by employing appropriate N alpha-acetylated peptide substrates. In contrast to the aminopeptidase activity, the endopeptidase activity showed rather strict specificity, preferring hydrophobic residues at P2 and P3 sites. Because of the broad specificity and high efficiency of the aminopeptidase activity, it was difficult to directly observe endopeptidase activity in the digestion of large peptide substrates with a free alpha-amino terminal. Thus, this is the first experimental evidence that indicates endopeptidase activity by assigning internal peptide bonds cleaved by this activity. From this data, we proposed a model of the binding site of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号