首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonlinear damping suspension is a promising method to be used in a rotor-bearing system for vibration isolation between the bearing and environment. However, the nonlinearity of the suspension may influence the stability of the rotor-bearing system. In this paper, the motions of a flexible rotor in short journal bearings with nonlinear damping suspension are studied. A computational method is used to solve the equations of motion, and the bifurcation diagrams, orbits, Poincaré maps, and amplitude spectra are used to display the motions. The results show that the effect of the nonlinear damping suspension on the motions of the rotor-bearing system depends on the speed of rotor: (a) For low speeds, the rotor- bearing system presents the same motion pattern under the nonlinear damping ( \(p=0.5, 2, 3\) ) suspension as for the linear damping ( \(p=1\) ) suspension; (b) For high speeds, the effect of nonlinear damping depends on a combination of the damping exponent and damping coefficient. The square root damping model ( \(p=0.5\) ) shows a wider stable speed range than the linear damping for large damping coefficients. The quadratic damping ( \(p=2\) ) shows similar results to linear damping with some special damping coefficients. The cubic damping ( \(p=3\) ) shows more stable response than the linear damping in general.  相似文献   

2.
3.
Nonlinear Dynamics - This study is dedicated to investigate the nonlinear dynamics of a system composed of a flexible rotor shaft carrying a longitudinally dispositioned unbalanced rigid disc. The...  相似文献   

4.
IntroductionDynamicsanalysisofcrackedrotorwhenignoringnonlinearwhirlingcouldbefoundinmanyReferences [1 -3 ] .Nonlineardynamicsofcrackedrotorwithwhirlinghavebeenstudiedbasedonformerscholar’swork[4 ]andthewhirlingequationsofacrackedshafthavebeenestablished .Th…  相似文献   

5.
The conditions that give rise to non-periodic motions of a Jeffcott rotor in the presence of non-linear elastic restoring forces are examined. It is well known that non-periodic behaviours that characterise the dynamics of a rotor are fundamentally a consequence of two aspects: the non-linearity of the hydrodynamic forces in the lubricated bearings of the supports and the non-linearity that affects the elastic restoring forces in the shaft of the rotor. In the present research the analysis was restricted to the influence of the non-linearity that characterises the elastic restoring forces in the shaft, adopting a system that was selected the simplest as possible. This system was represented by a Jeffcott rotor with a shaft of mass that was negligible respect to the one of the disk, and supported with ball bearings. In order to check in a straightforward manner the non-linearity of the system and to confirm the results obtained through theoretical analysis, an investigation was carried out using an experimental model consisting of a rotating disk fitted in the middle of a piano wire pulled taut at its ends but leaving the tension adjustable. The adopted length/diameter ratio was high enough to assume the wire itself was perfectly flexible while its mass was negligible compared to that of the disk. Under such hypotheses the motion of the disk centre can be expressed by means of two ordinary, non-linear and coupled differential equations. The conditions that make the above motion non-periodic or chaotic were found through numerical integration of the equations of motion. A number of numerical trials were carried out using a 4th order Runge-Kutta routine with adaptive stepsize control. This procedure made it possible to plot the trajectories of the disk centre and the phase diagrams of the component motions, taken along two orthogonal coordinate axes, with their projections of the Poincaré sections. On the basis of the theoretical results obtained, the conditions that give rise to non-periodic motions of the experimental rotor were identified.  相似文献   

6.
Chaotic motions and fault detection in a cracked rotor   总被引:9,自引:0,他引:9  
Applying the theory of Lyapunov exponents for nonsmooth dynamical systems, chaotic motions and strange attractors are found in the case of a cracked rotor. To detect the crack and establish a clear relation between shaft cracks in turbo rotors and induced phenomena in vibrations measured in bearings, a model-based method is applied. Based on a fictitious model of the time behaviour of the nonlinearities, a state observer of an extended dynamical system is designed resulting in estimates of the nonlinear effects.  相似文献   

7.
Yu  Tian-Jun  Zhou  Sha  Yang  Xiao-Dong  Zhang  Wei 《Nonlinear dynamics》2018,91(2):1041-1060
Nonlinear Dynamics - Global dynamics of a flexible asymmetrical rotor resting on vibrating supports is investigated. Hamilton’s principle is used to derive the partial differential governing...  相似文献   

8.
S. P. Timoshenko Institute of Mechanics, Ukrainian Academy of Science, Kiev. Translated from Prikladnaya Mekhanika, Vol. 30, No. 1, pp. 68–75, January, 1994.  相似文献   

9.
The effects of uncertainties on the non-linear dynamics response remain misunderstood and most of the classical stochastic methods used in the linear case fail to deal with a non-linear problem. So we propose to take into account of uncertainties into non-linear models, by coupling the Harmonic Balance Method (HBM) and the Polynomial Chaos Expansion (PCE). The proposed method called the Stochastic Harmonic Balance Method (Stochastic-HBM) is based on a new formulation of the non-linear dynamic problem in which not only the approximated non-linear responses but also the non-linear forces and the excitation pulsation are considered as stochastic parameters. Expansions on the PCE basis are performed by passing via an Alternate Frequency Time method with Probabilistic Collocation (AFTPC) for estimating the stochastic non-linear forces in the stochastic domain and the frequency domain. In the present paper, the Stochastic Harmonic Balance Method (Stochastic-HBM) that is applied to a flexible non-linear rotor system, with random parameters modeled as random fields, is presented. The Stochastic-HBM combined with an Alternate Frequency-Time method with Probabilistic Collocation (AFTPC) allows us to solve dynamical problems with non-regular non-linearities in presence of uncertainties. In this study, the procedure is developed for the estimation of stochastic non-linear responses of the rotor system with different regular and non-regular non-linearities. The finite element rotor system is composed of a shaft with two disks and two flexible bearing supports where the non-linearities are due to a radial clearance or a cubic stiffness. A numerical analysis is performed to analyze the effect of uncertainties on the non-linear behavior of this rotor system by using the Stochastic-HBM. Furthermore, the results are compared with those obtained by applying a classical Monte-Carlo simulation to demonstrate the efficiency of the proposed methodology.  相似文献   

10.
Chaotic motions of a rigid rotor in short journal bearings   总被引:65,自引:0,他引:65  
In the present paper the conditions that give rise to chaotic motions in a rigid rotor on short journal bearings are investigated and determined. A suitable symmetry was given to the rotor, to the supporting system, to the acting system of forces and to the system of initial conditions, in order to restrict the motions of the rotor to translatory whirl. For an assigned distance between the supports, the ratio between the transverse and the polar mass moments of the rotor was selected conveniently small, with the aim of avoiding conical instability. Since the theoretical analysis of a system's chaotic motions can only be carried out by means of numerical investigation, the procedure here adopted by the authors consists of numerical integration of the rotor's equations of motion, with trial and error regarding the three parameters that characterise the theoretical model of the system: m, the half non-dimensional mass of the rotor, , the modified Sommerfeld number relating to the lubricated bearings, and , the dimensionless value of rotor unbalance. In the rotor's equations of motion, the forces due to the lubricating film are written under the assumption of isothermal and laminar flow in short bearings. The number of numerical trials needed to find the system's chaotic responses has been greatly reduced by recognition of the fact that chaotic motions become possible when the value of the dimensionless static eccentricity % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnL2yY9% 2CVzgDGmvyUnhitvMCPzgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqe% fqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0d% Xdh9vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9% pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca% qabeaadaabauaaaOqaaiabew7aLnaaBaaaleaacaWGZbaabeaaaaa!4046!\[\varepsilon _s \] is greater than 0.4. In these conditions, non-periodic motions can be obtained even when rotor unbalance values are not particularly high (=0.05), whereas higher values (>0.4) make the rotor motion periodic and synchronous with the driving rotation. The present investigation has also identified the route that leads an assigned rotor to chaos when its angular speed is varied with prefixed values of the dimensionless unbalance . The theoretical results obtained have then been compared with experimental data. Both the theoretical and the experimental data have pointed out that in the circumstances investigated chaotic motions deserve more attention, from a technical point of view, than is normally ascribed to behaviours of this sort. This is mainly because such behaviours are usually considered of scarce practical significance owing to the typically bounded nature of chaotic evolution. The present analysis has shown that when the rotor exhibits chaotic motions, the centres of the journals describe orbits that alternate between small and large in an unpredictable and disordered manner. In these conditions the thickness of the lubricating film can assume values that are extremely low and such as to compromise the efficiency of the bearings, whereas the rotor is affected by inertia forces that are so high as to determine severe vibrations of the supports.Nomenclature C radial clearance of bearing (m) - D diameter of bearing (m) - e dimensional eccentricity of journal (m) - e s value of e corresponding to the static position of the journal - E dimensional static unbalance of rotor (m) - f x, f y =F x/(P), F y/(P): non-dimensional components of fluid film force - F x, F y dimensional components of fluid film force (N) - g acceleration of gravity (m/s2) - L axial length of bearing (m) - m % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnL2yY9% 2CVzgDGmvyUnhitvMCPzgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqe% fqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0d% Xdh9vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9% pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca% qabeaadaabauaaaOqaaiabg2da9maalaaabaGaeqyYdC3aaWbaaSqa% beaacaaIYaaaaaGcbaGaeqyYdC3aa0baaSqaaGabciaa-bdaaeaaca% WFYaaaaaaakiabg2da9maalaaabaGaeqyYdC3aaWbaaSqabeaacaaI% YaaaaOGaam4qaaqaaiabeo8aZjaadEgaaaaaaa!4C14!\[ = \frac{{\omega ^2 }}{{\omega _0^2 }} = \frac{{\omega ^2 C}}{{\sigma g}}\]: half non-dimensional mass of rotor - M half mass of rotor (kg) - n angular speed of rotor (in r.p.m.=60/2) - t time  相似文献   

11.
Global bifurcations and multi-pulse chaotic motions of flexible multi-beam structures derived from an L-shaped beam resting on a vibrating base are investigated considering one to two internal resonance and principal resonance. Base on the exact modal functions and the orthogonality conditions of global modes, the PDEs of the structure including both nonlinear coupling and nonlinear inertia are discretized into a set of coupled autoparametric ODEs by using Galerkin’s technique. The method of multiple scales is applied to yield a set of autonomous equations of the first order approximations to the response of the dynamical system. A generalized Melnikov method is used to study global dynamics for the “resonance case”. The present analysis indicates multi-pulse chaotic motions result from the existence of Šilnikov’s type of homoclinic orbits and the critical parameter surface under which the system may exhibit chaos in the sense of Smale horseshoes are obtained. The global results are finally interpreted in terms of the physical motion of such flexible multi-beam structure and the dynamical mechanism on chaotic pattern conversion between the localized mode and the coupled mode are revealed.  相似文献   

12.
The dynamics of a modified Jeffcott rotor is studied, including rotor torsional deformation and rotor-stator contact. Conditions are studied under which the rotor undergoes either forward synchronous whirling or self-excited backward whirling motions with continuous stator contact. For forward whirling, the effect on the response is investigated for two commonly used rotor-stator friction models, namely, the simple Coulomb friction and a generalized Coulomb law with cubic dependence on the relative slip velocity. For cases with and without the rotor torsional degree of freedom, analytical estimates and numerical bifurcation analyses are used to map out regions in the space of drive speed and a friction parameter, where rotor-stator contact exists. The nature of the bifurcations in which stability is lost are highlighted. For forward synchronous whirling fold, Hopf, lift-off, and period-doubling bifurcations are encountered. Additionally, for backward whirling, regions of transitions from pure sticking to stick-slip oscillations are numerically delineated.  相似文献   

13.
Summary The stability of a symmetric, one-disk rotor model in flexible bearings has been analyzed. The viscoelastic property of the shaft complying with a 3-parameter standard model has been taken into account. The existence of an unstable region has been proved analytically. It exists only in the range of small values of the external damping coefficient. The flexibility and damping of the bearings causes a reduction of the unstable region. The stability condition has been derived analytically.
Das dynamische Verhalten eines flexibel gelagerten, viskoelastischen Rotors
Übersicht Untersucht wird die Stabilität eines symmetrischen Rotormodells mit einzelner Scheibe und flexibler Lagerung. Dabei wird die Welle durch das viskoelastische Standardmodell mit drei Elementen beschrieben. Die Existenz eines Instabilitätsbereichs wird analytisch nachgewiesen, allerdings existiert er nur für kleine Werte der äußeren Dämpfung. Die Flexibilität und Dämpfung in den Lagern verkleinert den Instabilitätsbereich. Die Stabilitätsbedingung wird analytisch hergeleitet.
  相似文献   

14.
Zhang  Zhenguo  Ma  Xinxing  Hua  Hongxing  Liang  Xihui 《Nonlinear dynamics》2020,102(4):2229-2246
Nonlinear Dynamics - This paper presents a stochastic model for performing the uncertainty and sensitivity analysis of a Jeffcott rotor system with fixed-point rub-impact and multiple uncertain...  相似文献   

15.
16.
Flexible joints are usually used to transfer velocities in robot systems and may lead to delays in motion transformation due to joint flexibility. In this paper, a linkrotor structure connected by a flexible joint or shaft is firstly modeled to be a slow-fast delayed system when moment of inertia of the lightweight link is far less than that of the heavy rotor. To analyze the stability and oscillations of the slowfast system, the geometric singular perturbation method is extended, with both slow and fast manifolds expressed analytically. The stability of the slow manifold is investigated and critical boundaries are obtained to divide the stable and the unstable regions. To study effects of the transformation delay on the stability and oscillations of the link, two quantitatively different driving forces derived from the negative feedback of the link are considered. The results show that one of these two typical driving forces may drive the link to exhibit a stable state and the other kind of driving force may induce a relaxation oscillation for a very small delay. However, the link loses stability and undergoes regular periodic and bursting oscillation when the transformation delay is large. Basically, a very small delay does not affect the stability of the slow manifold but a large delay affects substantially.  相似文献   

17.
A new active control method is presented to attenuate vibrations of a flexible beam with nonlinear hysteresis and time delay. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc—Wen model. By specific transformation and augmentation of state parameters, we can convert the motion equation of the system with explicit time delay to the standard state space representation without any explicit time delay. Then the instantaneous optimal control method and Runge—Kutta method in fourth-order are applied to the controller design with time delay. Finally, in order to verify the effectivity of the time-delay controller proposed, numerical simulations are implemented. It is indicated by the simulation results that the control performance will deteriorate if neglect the time delay in process of the controller design and proposed time delay controller works well with both small and large time delay problems.  相似文献   

18.
19.
A general model of a rub-impact rotor-bearing system with initial permanent bow is set up and the corresponding governing motion equation is given. The nonlinear oil-film forces from the journal bearing are obtained under the short bearing theory. The rubbing model is assumed to consist of the radial elastic impact and the tangential Coulomb type of friction. Through numerical calculation, rotating speeds, initial permanent bow lengths and phase angles between the mass eccentricity direction and the rotor permanent bow direction are used as control parameters to investigate their effect on the rub-impact rotor-bearing system with the help of bifurcation diagrams, Lyapunov exponents, Poincaré maps, frequency spectrums and orbit maps. Complicated motions, such as periodic, quasi-periodic even chaotic vibrations, are observed. Under the influence of the initial permanent bow, different routes to chaos are found and the speed when the rub happens is changed greatly. Corresponding results can be used to diagnose the rub-impact fault in this kind of rotor systems and this study may contribute to a further understanding of the nonlinear dynamics of such a rub-impact rotor-bearing system with initial permanent bow.  相似文献   

20.
Nonlinear dynamics of a cracked rotor in a maneuvering aircraft   总被引:1,自引:0,他引:1  
The nonlinear dynamics of a cracked rotor system in an aircraft maneuvering with constant velocity or acceleration was investigated, The influence of the aircraft climbing angle on the cracked rotor system response is of particular interest and the results show that the climbing angle can markedly affect the parameter range for bifurcation, for quasiperiodic response and for chaotic response as well as for system stability. Aircraft acceleration is also shown to significantly affect the nonlinear behavior of the cracked rotor system, illustrating the possibility for on-line rotor crack fault diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号