首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper presents a fast numerical method, based on the indirect shooting method and Proper Orthogonal Decomposition (POD) technique, for solving distributed optimal control of the wave equation. To solve this problem, we consider the first‐order optimality conditions and then by using finite element spatial discretization and shooting strategy, the solution of the optimality conditions is reduced to the solution of a series of initial value problems (IVPs). Generally, these IVPs are high‐order and thus their solution is time‐consuming. To overcome this drawback, we present a POD indirect shooting method, which uses the POD technique to approximate IVPs with smaller ones and faster run times. Moreover, in the presence of the nonlinear term, to reduce the order of the nonlinear calculations, a discrete empirical interpolation method (DEIM) is applied and a POD/DEIM indirect shooting method is developed. We investigate the performance and accuracy of the proposed methods by means of 4 numerical experiments. We show that the presented POD and POD/DEIM indirect shooting methods dramatically reduce the CPU time compared to the full indirect shooting method, whereas there is no significant difference between the accuracy of the reduced and full indirect shooting methods.  相似文献   

2.
In this paper, we focus on the need to solve chaotic solutions of high-dimensional nonlinear dynamic systems of which the analytic solution is difficult to obtain. For this purpose, a Differential Control Method (DCM) is proposed based on the Mechanized Mathematics-Wu Elimination Method (WEM). By sampling, the computer time of the differential operator of the nonlinear differential equation can be substituted by the differential quotient of solving the variable time of the sample. The main emphasis of DCM is placed on substituting the differential quotient of a small neighborhood of the sample time of the computer system for the differential operator of the equations studied. The approximate analytical chaotic solutions of the nonlinear differential equations governing the high-dimensional dynamic system can be obtained by the method proposed. In order to increase the computational efficiency of the method proposed, a thermodynamics modeling method is used to decouple the variable and reduce the dimension of the system studied. The validity of the method proposed for obtaining approximate analytical chaotic solutions of the nonlinear differential equations is illustrated by the example of a turbo-generator system. This work is applied to solving a type of nonlinear system of which the dynamic behaviors can be described by nonlinear differential equations.  相似文献   

3.
This paper presents an algorithm to obtain numerically stable differentiation matrices for approximating the left- and right-sided Caputo-fractional derivatives. The proposed differentiation matrices named fractional Chebyshev differentiation matrices are obtained using stable recurrence relations at the Chebyshev–Gauss–Lobatto points. These stable recurrence relations overcome previous limitations of the conventional methods such as the size of fractional differentiation matrices due to the exponential growth of round-off errors. Fractional Chebyshev collocation method as a framework for solving fractional differential equations with multi-order Caputo derivatives is also presented. The numerical stability of spectral methods for linear fractional-order differential equations (FDEs) is studied by using the proposed framework. Furthermore, the proposed fractional Chebyshev differentiation matrices obtain the fractional-order derivative of a function with spectral convergence. Therefore, they can be used in various spectral collocation methods to solve a system of linear or nonlinear multi-ordered FDEs. To illustrate the true advantages of the proposed fractional Chebyshev differentiation matrices, the numerical solutions of a linear FDE with a highly oscillatory solution, a stiff nonlinear FDE, and a fractional chaotic system are given. In the first, second, and forth examples, a comparison is made with the solution obtained by the proposed method and the one obtained by the Adams–Bashforth–Moulton method. It is shown the proposed fractional differentiation matrices are highly efficient in solving all the aforementioned examples.  相似文献   

4.
A substitution box is used to induce nonlinearity in plaintext for encryption systems. Recently, the application of chaotic maps to encryption applications has resulted in some interesting nonlinear transformations. In this paper, we propose an efficient method to design nonlinear components for block ciphers that are based on TD-ERCS chaotic sequence. The new substitution box is analyzed for nonlinearity, bit independence, strict avalanche criterion, generalized majority logic criterion, and differential and linear approximation probabilities. The results show high resistance to differential and linear cryptanalysis in comparison to some recently proposed chaotic substitution boxes.  相似文献   

5.
Recently a lot of methods have been presented for solving optimization problems. In this paper, we are trying to propose a new hybrid algorithm for solving these kinds of problem. The proposed algorithm is based on chaotic artificial bee colony and chaotic simulated annealing, CABC–CSA. The chaotic artificial bee colony finds new locations chaotically. Actually, the proposed algorithm provides a combination of local search accuracy of simulated annealing and the ability of global search of artificial bee colony. Furthermore, we used a different method for generating the initial population. The proposed algorithm is validated using 12 benchmark functions. The results are compared with those of the artificial bees’ algorithm, the hybrid algorithm of artificial bee colony and simulated annealing and particle swarm optimization. Simulation results show the efficiency of the proposed algorithm.  相似文献   

6.
In this paper, parameters identification for chaotic systems using a modified Jaya algorithm is considered. Firstly, the objective function is formulated based on the variance rate between the responses acquired from the measurement and calculation. Then, the Jaya algorithm is put forward to solve this nonlinear optimization problem. To enhance the performance of the original Jaya, a one-step K-means clustering mechanism and a new updated equation for the best-so-far solution are introduced. To demonstrate the effectiveness of the suggested method, benchmark functions are firstly employed to conduct optimize. Afterward, numerical simulations, including a jerk circuit chaotic system, a hyper-chaotic system and a synchronized chaotic system are used to verify the present algorithm. The simulation results illustrates that the proposed algorithm for chaotic systems is a promising tool with higher identification accuracy, faster convergence rate, as well as stronger robustness.  相似文献   

7.
This paper is concerned with the robust adaptive synchronization problem for a class of chaotic systems with actuator failures and unknown nonlinear uncertainty. Combining adaptive method and linear matrix inequality (LMI) technique, a novel type of robust adaptive reliable synchronization controller is proposed, which can eliminate the effect of actuator fault and nonlinear uncertainty on systems. After solving a set of LMIs, synchronization error between the master chaotic and slave chaotic systems can converge asymptotically to zero. Finally, illustrate examples about chaotic Chua’s circuit system and Lorenz systems are provided to demonstrate the effectiveness and applicability of the proposed design method.  相似文献   

8.
Nonlinear chaotic systems yield many interesting features related to different physical phenomena and practical applications. These systems are very sensitive to initial conditions at each time-iteration level in a numerical algorithm. In this article, we study the behavior of some nonlinear chaotic systems by a new numerical approach based on the concept of Galerkin–Petrov time-discretization formulation. Computational algorithms are derived to calculate dynamical behavior of nonlinear chaotic systems. Dynamical systems representing weather prediction model and finance model are chosen as test cases for simulation using the derived algorithms. The obtained results are compared with classical RK-4 and RK-5 methods, and an excellent agreement is achieved. The accuracy and convergence of the method are shown by comparing numerically computed results with the exact solution for two test problems derived from another nonlinear dynamical system in two-dimensional space. It is shown that the derived numerical algorithms have a great potential in dealing with the solution of nonlinear chaotic systems and thus can be utilized to delineate different features and characteristics of their solutions.  相似文献   

9.
The application of the nonlinear chaotic dynamic system in economics and finance has expanded rapidly in the last decades. This paper considers the localization of all compact invariant sets of a new three-dimensional autonomous nonlinear finance chaotic system. The boundedness of the new finance chaotic system is the first time being investigated. Based on the iteration theorem and the first-order extremum theorem, a new method is proposed, too. The comparison of our method with the traditional method is presented as well. More specifically, the compact invariant sets are analyzed in three aspects: First of all, a localization of the new finance chaotic system by two frusta and an ellipsoidal used by traditional methods is discussed. Second, a localization of the new finance chaotic system by two frusta and a parabolic cylinder is provided. Third, localization of the new finance chaotic system according to superposition of the ellipsoidal, parabolic cylinder, and two frusta are presented, and the boundedness of the chaotic attracter is smaller than in the classical methods. Numerical simulations are given to indicate the effectiveness of the proposed method.  相似文献   

10.
This paper presents a new technique using a recurrent non-singleton type-2 sequential fuzzy neural network (RNT2SFNN) for synchronization of the fractional-order chaotic systems with time-varying delay and uncertain dynamics. The consequent parameters of the proposed RNT2SFNN are learned based on the Lyapunov–Krasovskii stability analysis. The proposed control method is used to synchronize two non-identical and identical fractional-order chaotic systems, with time-varying delay. Also, to demonstrate the performance of the proposed control method, in the other practical applications, the proposed controller is applied to synchronize the master–slave bilateral teleoperation problem with time-varying delay. Simulation results show that the proposed control scenario results in good performance in the presence of external disturbance, unknown functions in the dynamics of the system and also time-varying delay in the control signal and the dynamics of system. Finally, the effectiveness of proposed RNT2SFNN is verified by a nonlinear identification problem and its performance is compared with other well-known neural networks.  相似文献   

11.
An approach to solving a variational equation used in geometrically and physically nonlinear problems of deformable body mechanics is considered. This approach is based on the continuation of a solution with respect to the loading parameter. Large systems of nonlinear ordinary differential equations arise in such problems. Usually, these systems are solved by the Euler methods. It is proposed to use the Runge-Kutta and multistep methods and to estimate the total computational cost. A dependence of numerical errors on the number of integration steps is obtained. An optimal method for solving nonlinear problems is chosen on the basis of this dependence.  相似文献   

12.
In this work, one of the most simple chaotic autonomous circuits, which has been reported in the literature, is presented. The proposed circuit, that belongs to jerk systems family, is described mathematically by a 3-D dynamical system with only five terms, and it has only one nonlinear term, which is the hyperbolic sine term implemented with two antiparallel diodes. This new jerk system presents interesting chaotic phenomena, such as coexisting attractors and antimonotonicity. Also, as an application of the proposed system a sound encryption scheme that is based on a random number generator, which is implemented with the jerk system, is presented. The practical usefulness of the proposed simple chaotic jerk circuit is confirmed from the results of NIST-800-22 tests of the chaotic random number generator, as well as from the successful sound encryption and decryption process.  相似文献   

13.
In this paper, we present a strong-form framework for solving the boundary value problems with geometric nonlinearity, in which an incremental theory is developed for the problem based on the Newton-Raphson scheme. Conventionally, the finite element methods (FEMs) or weak-form based meshfree methods have often been adopted to solve geometric nonlinear problems. However, issues, such as the mesh dependency, the numerical integration, and the boundary imposition, make these approaches computationally inefficient. Recently, strong-form collocation methods have been called on to solve the boundary value problems. The feasibility of the collocation method with the nodal discretization such as the radial basis collocation method (RBCM) motivates the present study. Due to the limited application to the nonlinear analysis in a strong form, we formulate the equation of equilibrium, along with the boundary conditions, in an incremental-iterative sense using the RBCM. The efficacy of the proposed framework is numerically demonstrated with the solution of two benchmark problems involving the geometric nonlinearity. Compared with the conventional weak-form formulation, the proposed framework is advantageous as no quadrature rule is needed in constructing the governing equation, and no mesh limitation exists with the deformed geometry in the incremental-iterative process.  相似文献   

14.
Convex approximation methods could produce iterative oscillation of solutions for solving some problems in structural optimization. This paper firstly analyzes the reason for numerical instabilities of iterative oscillation of the popular convex approximation methods, such as CONLIN (Convex Linearization), MMA (Method of Moving Asymptotes), GCMMA (Global Convergence of MMA) and SQP (Sequential Quadratic Programming), from the perspective of chaotic dynamics of a discrete dynamical system. Then, the usual four methods to improve the convergence of optimization algorithms are reviewed, namely, the relaxation method, move limits, moving asymptotes and trust region management. Furthermore, the stability transformation method (STM) based on the chaos control principle is suggested, which is a general, simple and effective method for convergence control of iterative algorithms. Moreover, the relationships among the former four methods and STM are exposed. The connection between convergence control of iterative algorithms and chaotic dynamics is established. Finally, the STM is applied to the convergence control of convex approximation methods for optimizing several highly nonlinear examples. Numerical tests of convergence comparison and control of convex approximation methods illustrate that STM can stabilize the oscillating solutions for CONLIN and accelerate the slow convergence for MMA and SQP.  相似文献   

15.
A two-dimensional, potential-theory based, fully nonlinear numerical wave tank (NWT) is developed for the simulation of wave–body interaction. In this NWT, the concept of acceleration potential is adopted in addition to the velocity potential. Both potentials are solved using the desingularized boundary integral equation method (DBIEM). By tapping the strength of the DBIEM, a new acceleration-potential solving method is proposed, which turns the originally implicit kinematic boundary condition on the surface of a passively moving body into an explicit one. Unlike the other existing methods such as the mode decomposition method, the indirect method and the iterative method, the present method requires solving of only one boundary value problem to determine the acceleration potential, and hence significantly enhances the computational efficiency. Using this NWT, the nonlinear interaction between a freely floating barge and various incident waves is investigated. It is confirmed that the new acceleration potential solving method outperforms other existing methods, saving at least 45% of the computational time.  相似文献   

16.
最小二乘跟踪方法是近几年提出的一种计算动力系统跟踪轨迹的方法.基于最小二乘跟踪的灵敏度分析算法可以有效避免传统的非线性系统灵敏度分析方法中的病态初值问题,因此其在混沌系统灵敏度分析方面有着重要的应用.针对非线性的最小二乘跟踪问题,首先将其重新描述为带有约束的非线性最优控制问题,引入协态变量并将系统的哈密顿函数表示为关于状态变量和协态变量的函数.然后将目标函数的积分时间离散化,根据对偶变量变分原理,以离散区间两端的状态变量作为独立变量,用Lagrange插值多项式近似离散区间内的状态变量和协态变量,进而将非线性最优控制问题转化为求解非线性方程组问题.这种算法无需对原问题做线性化处理,避免了复杂的线性化过程以及可能因此造成的误差,同时为求解非线性最小二乘跟踪问题提供了新的思路.根据最小二乘方法可以得到两条设计参数有微小变化的状态轨迹,基于这两条状态轨迹可进一步计算出系统关于设计参数的灵敏度,范德波振子作为数值算例验证了该方法在求解最小二乘跟踪问题以及计算非线性系统灵敏度时的有效性.   相似文献   

17.
Dynamic programming is a very useful tool in solving optimization and optimal control problems. Here, the Approximate Dynamic Programming (ADP) and the notion of neural networks based predictive control are combined with a model-free control method based on SPSA (Simultaneous perturbation stochastic approximation), and a novel ADP based model-free predictive control strategy for nonlinear systems is proposed. Dynamic programming is used to adjust the control parameters in the novel model-free control method and the notion of predictive control is introduced to modify the whole control structure. Finally, the proposed ADP based model-free predictive control strategy is applied to solve nonlinear tracking problems and the effectiveness of this novel control method is fully illustrated though simulation tests on two typical nonlinear systems.  相似文献   

18.

In the present article, a terminal sliding mode control strategy has been proposed in order to address the synchronization problem for a class of perturbed nonlinear systems with fixed convergence time and input quantization. The proposed protocol guarantees the fixed-time convergence of the sliding manifold to the origin, which means that the convergence time of the proposed sliding manifold does not change on the variations of initial values, different from typical control methods. Here, the hysteresis quantizer, as a specific type of quantizer with nonlinear sector-bounded, is applied in order to quantize the input signal. The proposed quantized control scheme vigorously prevents the potential adverse chattering phenomenon which is experienced in the common quantization methods. The proposed controller does not need the limiting criteria related to considered parameters of quantization compared to recent control approaches. Finally, the designed controller is implemented on the perturbed Genesio–Tesi (G–T) chaotic systems to verify effectiveness and strength of the proposed method.

  相似文献   

19.
It is an important issue to estimate parameters of chaotic systems in nonlinear science. In this paper, delay time as well as parameters of time-delay chaotic system is considered by treating delay time as an additional parameter. The parameter estimation problem is formulated as a multidimensional optimization problem, and an effective hybrid biogeography-based optimization is developed to solve this problem. Numerical simulations are conducted on two typical time-delay chaotic systems to show the effectiveness of the proposed scheme.  相似文献   

20.
An analytical approach is developed for nonlinear free vibration of a conservative, two-degree-of-freedom mass–spring system having linear and nonlinear stiffnesses. The main contribution of the proposed approach is twofold. First, it introduces the transformation of two nonlinear differential equations of a two-mass system using suitable intermediate variables into a single nonlinear differential equation and, more significantly, the treatment a nonlinear differential system by linearization coupled with Newton’s method and harmonic balance method. New and accurate higher-order analytical approximate solutions for the nonlinear system are established. After solving the nonlinear differential equation, the displacement of two-mass system can be obtained directly from the governing linear second-order differential equation. Unlike the common perturbation method, this higher-order Newton–harmonic balance (NHB) method is valid for weak as well as strong nonlinear oscillation systems. On the other hand, the new approach yields simple approximate analytical expressions valid for small as well as large amplitudes of oscillation unlike the classical harmonic balance method which results in complicated algebraic equations requiring further numerical analysis. In short, this new approach yields extended scope of applicability, simplicity, flexibility in application, and avoidance of complicated numerical integration as compared to the previous approaches such as the perturbation and the classical harmonic balance methods. Two examples of nonlinear two-degree-of-freedom mass–spring system are analyzed and verified with published result, exact solutions and numerical integration data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号