首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exact solutions in form of elementary functions were derived for the stress and electric displacement intensity factors of a circular crack in a transversely isotropic piezoelectric space interacting with various stress and charge sources: force dipoles, electric dipoles, moments, force dilatation and rotation. The circular crack includes penny-shaped crack and external circular crack and the locations and orientations of these resultant sources with respect to the crack are arbitrary. Such stress and charge sources may model defects like vacancies, foreign particles, and dislocations. Numerical results are presented at last.  相似文献   

2.
I. INTRODUCTIONBecause of the widespread application and intrinsic brittleness of piezoelectric ceramics, significantattention is being paid to the crack problems of piezoelectric ceramics. The last decade has seen a lotof three-dimensional studies of crack in piezoelectric ceramics[1??9]. In addition, the electroelastic fieldin a transversely isotropic piezoelectric space with a half-plane crack subjected to symmetric normalpoint forces, antisymmetric tangential point forces and point ch…  相似文献   

3.
We investigate a semi-infinite crack penetrating a piezoelectric circular inhomogeneity bonded to an infinite piezoelectric matrix through a linear viscous interface. The tip of the crack is at the center of the circular inhomogeneity. By means of the complex variable and conformal mapping methods, exact closed-form solutions in terms of elementary functions are derived for the following three loading cases: (i) nominal Mode-III stress and electric displacement intensity factors at infinity; (ii) a piezoelectric screw dislocation located in the unbounded matrix; and (iii) a piezoelectric screw dislocation located in the inhomogeneity. The time-dependent electroelastic field in the cracked composite system is obtained. Particularly the time-dependent stress and electric displacement intensity factors at the crack tip, jumps in the displacement and electric potential across the crack surfaces, displacement jump across the viscous interface, and image force acting on the piezoelectric screw dislocation are all derived. It is found that the value of the relaxation (or characteristic) time for this cracked composite system is just twice as that for the same fibrous composite system without crack. Finally, we extend the methods to the more general scenario where a semi-infinite wedge crack is within the inhomogeneity/matrix composite system with a viscous interface.  相似文献   

4.
The intrinsic coupling between the mechanical and the electric fields assigns a uniquefeature for the fracture in a piezoelectric solid. We model the kink of a crack by continuousdistribution of edge dislocations and electric dipoles. The problem admits an approach based onthe Stroh formalism. A set of coupled singular integral equations are derived for the dislocationand electric dipole density functions associated with a kinked crack. Numerical results indicatethat the crack tends to propagate in a straight line under a tensile stress and a positive electricfield. For a crack subjected to the mixed mode mechanical loading, a superimposed positiveelectric field tends to reduce the kink angle. The influence of the non-singular T-stress-chargeparallel to a crack is also investigated. It is shown that a transverse tensile stress or a positivetransverse electric field will lead to further deviation of the kinked crack from the crackextension line.  相似文献   

5.
张炳彩  丁生虎 《力学季刊》2022,43(3):640-650
利用复变函数方法和保角变换技术研究了压电效应下一维六方准晶双材料中圆孔边单裂纹的反平面问题.考虑电不可渗透型边界条件,运用保角变换和Stroh公式得到了弹性体受远场剪切力和面内电载荷作用下裂纹尖端应力强度因子和能量释放率的解析解. 数值算例分析了几何参数、远场受力、电位移载荷对能量释放率的影响.结果表明:裂纹长度、耦合系数和远场剪切力的减小可以抑制裂纹的扩展.不考虑电场时,声子场应力对能量释放率的影响较小.本文的研究结果可作为研究一维六方压电准晶双材料孔边裂纹问题的理论基础,同时为压电准晶及其复合材料的设计、制备、优化和性能评估提供理论依据.  相似文献   

6.
The interaction between crack and electric dipole of piezoelectricity   总被引:4,自引:0,他引:4  
Discrete dipoles located near the crack tip play an important role in nonlinear electric field induced fracture of piezoelectric ceramics. A physico-mathematical model of dipole is constructed of two generalized concentrated piezoelectric forces with equal density and opposite sign. The interaction between crack and electric dipole in piezoelectricity is analyzed. The closed form solutions, including those for stress and electric displacement, crack opening displacement and electric potential, are obtained. The function of piezoelectric anisotropic direction,p a (θ)=cosθ+p a sinθ, can be used to express the influence of a dipole's direction. In the case that a dipole locates near crack tip, the piezoelectric stress intensity factor is a power function with −3/2 index of the distance between dipole and crack tip. Supported by National Natural Science Foundation of China(No. 10072033)  相似文献   

7.
Thermo-electro-structural coupled analyses of crack arrest by Joule heating   总被引:2,自引:0,他引:2  
Using the finite element method, thermo-electro-structural coupled analyses of the cracked conducting plate under high electric current have been solved. The crack contact condition and temperature-dependent material properties are considered in this analysis. The crack tip temperature, electric current density factor, stress intensity factor and strain energy density factor are obtained for discussions. Due to high electric current density and Joule heating at the crack tip, a circular melting area may exist around the tip. After cooling, a circular void or hole may occur at the crack tip and the crack arrest is achieved. The crack tip temperature decreases when the crack contact area increases. The proper tensile load is necessary for making the crack open enough and causing high current density at the crack tip and associated crack arrest. On the other hand, the crack tip temperature increases with time by the increasing external current and Joule heating. The values of mode-I stress intensity factor and strain energy density factor decrease with time due to the thermal deformation around the crack tip. Because of the temperature-dependent resistivity, the variation of the electric current density factor is complicated. In addition, it is not easy to create a crack-arrest condition when the crack length relative to the plate width is too small.  相似文献   

8.
This is part II of the work concerned with finding the stress intensity factors for a circular crack in a solid with piezoelectric behavior. The method of solution involves reducing the problem to a system of hypersingular integral equations by application of the unit concentrated displacement discontinuity and the unit concentrated electric potential discontinuity derived in part I [1]. The near crack border elastic displacement, electric potential, stress and electric displacement are obtained. Stress and electric displacement intensity factors can be expressed in terms of the displacement and the potential discontinuity on the crack surface. Analogy is established between the boundary integral equations for arbitrary shaped cracks in a piezoelectric and elastic medium such that once the stress intensity factors in the piezoelectric medium can be determined directly from that of the elastic medium. Results for the penny-shaped crack are obtained as an example.  相似文献   

9.
Within the framework of the linear theory of magnetoelectroelasticity, the problem of a circular layered inclusion interacting with a generalized screw dislocation under remote anti-plane shear stress and in-plane magnetoelectric loads is investigated in this paper. The generalized dislocation can be located either in the matrix or in the circular layered inclusion. The layers are coaxial cylinders of annular cross-sections with arbitrary radii and different material properties. Using complex variable theory and the alternating technique, the solution of the present problem is expressed in terms of the solution of the corresponding homogeneous medium problem subjected to the same loading. Some numerical results are provided to investigate the influence of material combinations on the shear stress, electric field, magnetic and image force. These solutions can be used as Green's functions for the analysis of the corresponding magnetoelectric crack problem.  相似文献   

10.
In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.  相似文献   

11.
Zhou  Zhen-Gong  Sun  Yu-Guo  Wang  Biao 《Meccanica》2004,39(1):63-76
In this paper, the dynamic behavior of a Griffith crack in a piezoelectric material strip subjected to the harmonic anti-plane shear waves is investigated by use of the non-local theory for impermeable crack surface conditions. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress and the electric displacement near at the crack tip. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations. These equations are solved using the Schmidt method. Contrary to the classical solution, it is found that no stress and electric displacement singularity is present near the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the thickness of the strip, the circular frequency of incident wave and the lattice parameter.  相似文献   

12.
Interaction between an arbitrarily located and oriented point force and point charge with a circular crack is considered. Obtained are the exact expressions for the stress intensity factors (SIFs) kj (j=1,2,3) and electric displacement intensity factor (EDIF) kD; they are given in terms of elementary functions. The results are also presented in graphical form.  相似文献   

13.
The interaction of a generalized screw dislocation with circular arc interfacial cracks under remote antiplane shear stresses, in-plane electric and magnetic loads in transversely isotropic magnetoelectroelastic solids is dealt with. By using the complex variable method, the general solutions to the problem are presented. The closed-form expressions of complex potentials in both the inhomogeneity and the matrix are derived for a single circular-arc interfacial crack. The intensity factors of stress, electric displacement and magnetic induction are provided explicitly. The image forces acting on the dislocation are also calculated by using the generalized Peach–Koehler formula. For the case of piezoelectric matrix and piezomagnetic inclusion, the shielding and anti-shielding effect of the dislocation upon the stress intensity factors is evaluated in detail. The results indicate that if the distance between the dislocation and the crack tip remains constant, the dislocation in the interface will have a largest shielding effect which retards the crack propagation. In addition, the influence of the interfacial crack geometry and materials magnetoelectroelastic mismatch upon the image force is discussed. Numerical computations show that the perturbation effect of the above parameters upon the image force is significant. The main result shows that a stable or unstable equilibrium point may be found when a screw dislocation approaches the surface of the crack from infinity which differs from the perfect bonded case under the same conditions. The present solutions contain a number of previously known results which can be shown to be special cases.  相似文献   

14.
Dynamic plane stress of sheets composed of two orthogonal families of inextensible fibers, with infinitesimal elastic shearing stress response, is considered. The fibers through the tip of a propagating tear or crack carry finite forces. Fracture criteria that can be expressed in terms of these tip forces are discussed. In a particular example it is shown that the maximum energy release rate criterion leads to a circular crack trajectory, while the so-called critical force and critical stress criteria imply that the crack is L-shaped, like cracks or tears in real fibrous materials.  相似文献   

15.
研究了反平面机械载荷和面内电载荷作用下压电体中考虑表面效应时孔边双裂纹问题的断裂特征.基于Gurtin-Murdoch表面理论模型,通过构造映射函数,利用复势电弹理论获得了应力场和电位移场的闭合解答.给出了裂纹尖端应力强度因子、电位移场强因子和能量释放率的解析解.讨论了开裂孔洞几何参数和施加力电载荷对电弹场强因子和能量释放率的影响.  相似文献   

16.
International Applied Mechanics - The problem of electric and stress state in a piezoelectric space with an arbitrary orientated elliptical crack under homogeneous force and electric loading is...  相似文献   

17.
The dynamic behavior of two parallel symmetric cracks in functionally graded piezoelectric/piezomagnetic materials subjected to harmonic antiplane shear waves is investigated using the Schmidt method. The present problem can be solved using the Fourier transform and the technique of dual integral equations, in which the unknown variables are jumps of displacements across the crack surfaces, not dislocation density functions. To solve the dual integral equations, the jumps of displacements across the crack surfaces are directly expanded as a series of Jacobi polynomials. Finally, the relations among the electric, magnetic flux, and dynamic stress fields near crack tips can be obtained. Numerical examples are provided to show the effect of the functionally graded parameter, the distance between the two parallel cracks, and the circular frequency of the incident waves upon the stress, electric displacement, and magnetic flux intensity factors at crack tips.  相似文献   

18.
The performance of engineering components and structures is strongly influenced by the interaction between design, manufacture and materials. A methodology to assess the integrity of a circular collector is presented by investigating the failure of copper lamellas. The investigated circular collector, having 315 copper lamellas, is one of the main parts of an electric motor. The fracture of the copper lamellas was observed in normal operation. This unexpected fracture required an investigation of the fracture origin, in order to improve the initial design. The numerical results of the finite element analysis on the stress field in the copper lamellas for the operating regimes, and the stress concentration effects are shown. Failure assessment diagram, based on notch stress intensity factor, was considered in order to estimate if crack initiation can occur. Finally a study of crack propagation will present comparatively the numerical obtained crack path against the one observed in-service.  相似文献   

19.
In this work,analysis of electromigration-induced void morphological evolution in solder interconnects is per-formed based on mass diffusion theory. The analysis is conducted for three typical experimentally observed void shapes: circular, ellipse, and cardioid. Void morphological evolution is governed by the competition between the electric field and surface capillary force.In the developed model,both the electric field and capillary force on the void's surface are solved analytically.Based on the mass conversation princi-ple,the normal velocity on the void surface during diffusion is obtained. The void morphological evolution behavior is investigated, and a physical model is developed to predict void collapse to a crack or to split into sub-voids under elec-tric current.It is noted that when the electric current is being applied from the horizontal direction, a circular void may either move stably along the electric current direction or col-lapse to a finger shape,depending on the relative magnitude of the electric current and surface capillary force.However, the elliptical-shaped void will elongate along the electric cur-rent direction and finally collapse to the finger shape.On the other hand,the cardioid-shaped void could bifurcate into two sub-voids when the electric current reaches a critical value. The theoretical predictions agree well with the experimental observations.  相似文献   

20.
论文研究了均匀电流密度和能量流作用下,热电材料中带4k个周期径向裂纹的圆形孔口问题.考虑非渗透型电和热边界条件,运用复变函数理论和保形映射方法,得到了热电材料中电流密度、能量密度和应力场的精确解.依据断裂力学理论,运用Cauchy积分公式得到了周期裂纹的电流、能量和应力强度因子.数值结果分析了场强度因子随各个参数的变化...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号