首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of different alkyl chains of nonionic surfactants and solubilized polar oily material on the solubilizing capacity of binary anionic‐nonionic mixed surfactant systems were studied. This system includes surface tension measurements to determine the critical micelle concentration. Results were analyzed using regular solution theory to obtain the mixed micelle and the interaction parameter β, in order to evaluate the type of interactions of surfactants in the mixed micelle. Solubilizing capacity has been investigated by measuring the optical density of solubilized polar oily materials like octanol, decanol, and dodecanol. The solubilizing phenomenon exhibited by mixed surfactants systems showed better results than that of the individual surfactant system. The amount of solubilization in mixed surfactant increases with increase in carbon chain length of alkyl polyglucoside.  相似文献   

2.
以芘为荧光探针、二苯酮为猝灭剂,用稳态荧光探针法测定了新型Gemini表面活性剂的临界胶团浓度(CMC)、胶团聚集数(Nagg)及胶团微极性.研究了Gemini表面活性剂结构和氯化钠浓度对CMC、Nagg、胶团微极性的影响.结果表明,新型Gemini表面活性剂的CMC比常规表面活性剂的CMC低1—2个数量级.当疏水基碳原子数增加时,CMC依次降低,Nagg增大,胶团微极性减小.当氯化钠浓度增大时,Nagg增大,胶团微极性减小.  相似文献   

3.
The interactions between an anionic surfactant, viz., sodium dodecylbenzenesulfonate and nonionic surfactants with different secondary ethoxylated chain length, viz., Tergitol 15-S-12, Tergitol 15-S-9, and Tergitol 15-S-7 have been studied in the present article. An attempt has also been made to investigate the effect of ethoxylated chain length on the micellar and the thermodynamic properties of the mixed surfactant systems. The micellar properties like critical micelle concentration (CMC), micellar composition (XA), interaction parameter (β), and the activity coefficients (fA and fNI) have been evaluated using Rubingh's regular solution theory. In addition to micellar studies, thermodynamic parameters like the surface pressure (ΠCMC), surface excess values (ΓCMC), average area of the monomers at the air–water interface (Aavg), free energy of micellization (ΔGm), minimum energy at the air–water interface (Gmin), etc., have also been calculated. It has been found that in mixtures of anionic and nonionic secondary ethoxylated surfactants, a surfactant containing a smaller ethoxylated chain is favored thermodynamically. Additionally, the adsorption of nonionic species on air/water interface and micelle increases with decreasing secondary ethoxylated chain length. Dynamic light scattering and viscometric studies have also been performed to study the interactions between anionic and nonionic surfactants used.  相似文献   

4.
Micellar and thermodynamic properties of anionic surfactants sodium dodecyl sulfate (SDS) and sodium dodecyl sulfonate (SDSn) in aqueous solutions of 5 wt% short-chain alcohols methanol, ethanol, and 1-butanol were investigated by experimental electrical conductivities, densities and sound velocities at 298.15 K. It was found that methanol behaves like a cosolvent and increases the critical micelle concentration (CMC) of both surfactants in aqueous solutions. However, the other investigated alkanols act as a cosurfactant and decrease the CMC by their presence. The values of the degree of counterion association on the micelles of both surfactants in aqueous methanol solution are same as those in pure water, and they decrease with increasing the alkyl chain length of alcohol. Furthermore, the values of the apparent molar volume and isentropic compressibility of the monomeric and micellar forms of the investigated surfactants were obtained from the experimental density and sound velocity data. It was found that the values of the apparent molar properties of both micellar and monomeric forms of the studied surfactants increase by increasing the alkyl chain of the alcohols.  相似文献   

5.
Novel anionic gemini surfactants, 1,2-bis(N-beta-carboxypropanoyl-N-alkylamino)ethane (2CnenAm; n is hydrocarbon chain length of 6, 8, 10, 12, or 14), with two hydrocarbon chains, two carboxylate groups, and two amide groups, were synthesized by three-step reactions. Their solution properties were characterized by equilibrium and dynamic surface tension, steady-state fluorescence spectroscopy of pyrene, and dynamic light-scattering techniques. The surface tension measurements of 2CnenAm give low critical micelle concentrations (cmc), great efficiency in lowering the surface tension, and strong adsorption at air/water interface. Gemini surfactants behave normally with the logarithm of cmc decrease linearly with the chain length. In addition, adsorption and micellization behavior of 2CnenAm was estimated by parameter of pC20, cmc/C20, and standard free energy (DeltaG(0)mic and DeltaG(0)ads); they are significantly influenced by hydrocarbon chain length, and the adsorption is promoted more than the micellization as chain length becomes longer. The results of dynamic light-scattering and fluorescence quenching indicate that small micelles of 2CnenAm are observed at the concentrations above the cmc, and further large particles are also seen. Further, from the dynamic surface tension measurements, it is found that the shorter hydrocarbon chain length of 2CnenAm, the faster the rate of decrease of surface tension.  相似文献   

6.
The interactions between oppositely charged surfactant-polymer systems have been studied using surface tension and conductivity measurements and the dependence of aggregation phenomenon over the polyelectrolyte concentration and chain length of cationic ATAB surfactants, cetyltrimethyl ammonium bromide (CTAB), tetradecyltrimethyl ammonium bromide (TTAB), and dodecyltrimethyl ammonium bromide (DTAB) have been investigated. It was observed that cationic surfactants induce cooperative binding with anionic polyelectrolyte at critical aggregation concentration (cac). The cac values of ATAB surfactants in the presence of anionic polyelectrolyte, sodium carboxy methyl cellulose (NaCMC), are considerably lower than their critical micelle concentration (cmc). After the complete complexation, free micelles are formed at the apparent critical micelle concentration (acmc), which is slightly higher in polyelectrolyte aqueous solution than in pure water. Among the cationic surfactants (i.e., CTAB, TTAB, and DTAB), DTAB was found to have least interaction with NaCMC. Surfactants with longer tail size strongly favor the interaction, indicating the dependence of aggregation phenomenon on the structure, morphology, and tail length of the surfactant.   相似文献   

7.
The sorption and diffusion processes of anionic surfactants with different chain length through polyacrylamide hydrogels with low swelling degree have been studied by electrical conductivity measurements. The multicomponent equilibrium equation has been used to model the sorption isotherms of different anionic surfactant in the hydrogels. Such isotherms show that initial rapid sorption of unimer surfactant into the membranes occurs, suggesting that non-freezing water can be involved in these interactions. In aqueous solution, at concentrations near and above the critical micelle concentration an anti-co-operative region is found. The diffusion coefficients of the anionic surfactants inside the hydrogel matrix show that the mobility of diffusing surfactant entities is dependent on cross-linker concentration and chain length. The Cukier hydrodynamic model and the free volume theory as modified by Peppas and Reinhart were applied to explain the dependence of the diffusion coefficients of surfactant on surfactant concentration inside the hydrogel. The hydrodynamic model was applied with success to the more hydrophilic surfactant, sodium 1-octanesulfonate, showing that the diffusion coefficients, D, increase when the resistance to hydrodynamic medium decreases; when the surfactant chain length increases (sodium dodecyl sulfate and sodium 1-hexadecane sulphonate) the variation of D with the free volume can only be understood considering the sieving effect produced by the surfactant inside gel.  相似文献   

8.
Phase behavior of cationic/anionic surfactant mixtures of the same chain length (n=10, 12 or 14) strongly depends on the molar ratio and actual concentration of the surfactants. Precipitation of catanionic surfactant and mixed micelles formation are observed over the concentration range investigated. Coacervate and liquid crystals are found to coexist in the transition region from crystalline catanionic surfactant to mixed micelles.The addition of oppositely charged surfactant diminishes the surface charge density at the mixed micelle/solution interface and enhances the apparent degree of counterion dissociation from mixed micelles. Cationic surfactants have a greater tendency to be incorporated in mixed micelles than anionic ones.  相似文献   

9.
The critical micelle concentration of mixtures of anionic and nonionic surfactants was measured. The anionic surfactants were alkylbenzene sulfonates and the nonionic surfactants were polyoxyethylene nonylphenols and a polyoxy-ethylene alcohol. The effect of added electrolyte, the number of ethylene oxide units in the polyethoxylate, and the anionic alkyl chain length were studied. All systems showed substantial negative deviations (lower CMC) from ideal solution theory. The results can be represented by regular solution theory. Charge separation appears to be the source of the nonideality. This considers the reduction of electrostatic repulsion between the ionic surfactant head groups in the mixed micelle, due to the insertion of nonionic hydrophilic groups between these charged groups, to be the cause of enhanced micelle formation. The physical basis of regular solution theory was shown to be consistent with the charge separation effect.  相似文献   

10.
Flow microcalorimetry was used to study the adsoption of anionic alkyl surfactants from aque--ous solutions onto silica. It is found that for alkyl sulfate systems the strength of adsorption interactionincreases with increases of the alkyl chain length and decreases as temperature rises. The adsorptiondepends only on monomer concentration of the solution even above the critical micelle concentration(cmc). The assumption is made that the adsorption involves only a transfer of monomers from bulkto surface phase. A different adsorption mechanism is operative for the alkyl carboxylate.  相似文献   

11.
In this paper a new class of multichain non-ionic surfactants based on lysine with two octyl, decyl, dodecyl or tetradecyl chains and one polydispersed polyoxyethylene diethanolamide head group are introduced. Measurements at air/water interface and bulk solution of surface-active properties such as surface tension and critical micelle concentration were made. These compounds were obtained by condensation of the corresponding long chain Nα, N x diacyl lysine with a polydispersed oxyethylene diethanolamine which was prepared in our laboratory. A preliminary study of their water solubility properties is also described. The surface-active properties were evaluated by measuring the variation of surface tension and the formation of a presumable CMC as a function of concentration in the aqueous solution. All compounds were soluble in water up to 0.5% (w/v). They showed normal surface tension values in water solution and presented higher CMC than classical polyoxyethylene alcohols non ionic surfactants with the same number of carbon atoms in the hydrophobic moiety. In this series when each chain is increased by four methylene units, the CMC falls to about one-hundreth of its previous value.  相似文献   

12.
The interactions between oppositely charged surfactant/polymer mixtures have been studied using conductivity and turbidity measurements. The dependence of aggregation phenomenon on the chain length and head group modifications of conventional cationic surfactants, i.e., hexadecyl- (HTAB), tetradecyl- (TTAB), and dodecyltrimethylammonium bromides (DTAB) and dimeric cationic surfactants, i.e., decyl- (DeDGB) and dodecyldimethylgemini bromides (DDGB), is investigated. It was observed that cationic surfactants induce cooperative binding with anionic polyelectrolytes at critical aggregation concentration (cac). The cac values are considerably lower than the critical micelle concentration (cmc) values for the same surfactant. After the complete complexation, free micelles are formed at the apparent critical micelle concentration (acmc), which is slightly higher in aqueous polyelectrolyte than in pure water. Among the conventional and dimeric cationic surfactants, DTAB and DeDGB, respectively, have been found to have least interactions with oppositely charged polyelectrolytes.  相似文献   

13.
The degree of micelle ionization of gemini surfactants has been investigated by using halide-sensitive fluorescence probes (e.g., 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ)). The fluorescence is quenched by the free bromide ions dissociated from surfactants. The degree of micelle ionization increased with increasing spacer chain length, but it decreased with increasing surfactant concentration. The Stern-Volmer plot gave two inflection points (i.e., not only at the cmc but also far above the cmc). The second inflection point suggested spherocylindrical micellar growth with decreases in the degree of micelle ionization. The spherocylindrical micellar growth was depressed with increasing spacer chain length, whereas it was enhanced with increasing tail chain length. The degree of micelle ionization of spherocylindrical micelles depended on the concentration and chain length of gemini surfactants. The change in SPQ fluorescence spectra upon hydrogenation was utilized to evaluate the solubilization site in micelle solutions. The dissolved SPQ in water was instantly reduced by the addition of NaBH4, resulting in abrupt changes in fluorescence intensity and spectral shift. All of the SPQ in micelle solution was also instantly reduced by NaBH4, indicating the existence of SPQ in the water bulk phase, but its fluorescence intensity increased upon the solubilization of hydrogenated SPQ into micelles.  相似文献   

14.
There is evidence in the literature that the rates of emulsion polymerization increase by a large factor as the alkyl chain length increases for a homologous series of surfactants. However, the area occupied by a surfactant molecule in a saturated monolayer at the polystryene/water interface is independent of chain length for alkyl sulfates so that, on the basis of Gardon's theory, equal rates of polymerization would be expected when equal concentrations of surfactants are used. There is a large increase in the number of polymer latex particles formed and in the rate of emulsion polymerization as the surfactant concentration is increased through the critical micelle concentration; this accounts for the large increases reported, because the lower members of the homologous series are below their critical micelle concentrations in most of the published studies. When a common concentration is chosen that is above the critical micelle concentration even for the lowest member of the series, only a relatively small increase in latex particle number and rate of emulsion polymerization with alkyl chain length of the surfactant is observed. This is attributable to an increase in the concentration of surfactant micelles. Good agreement with Gardon's theory is obtained when the concentration of micellar surfactant is used instead of the total surfactant concentration.  相似文献   

15.
Dimeric (gemini) surfactants are made up of two amphiphilic moieties connected at the level of, or very close to, the head groups by a spacer group of varying nature: hydrophilic or hydrophobic, rigid or flexible. These surfactants represent a new class of surfactants that is finding its way into surfactant-based formulations. The nature of the spacer group (length, flexibility, chemical structure) has been shown to be of the utmost importance in determining the solution properties of aqueous dimeric surfactants. This paper reviews the effect of the nature of the spacer on some of these properties. The behavior of dimeric surfactants in the submicellar range of concentration, at interfaces, in dilute solution (solubility in water, Krafft temperature, critical micellization concentration, thermodynamics of micelle formation, micelle ionization degree, size, polydispersity, micropolarity and microviscosity, microstructure and rheology of the solutions, solubilization, micelle dynamics, and interaction with polymers) and in concentrated solution (phase behavior) are successively reviewed. Selected results concerning trimeric and tetrameric surfactants are also reviewed.  相似文献   

16.
A series of anionic Gemini surfactants with the same structure except for the spacer and side chain length of the alkylbenzene sulfonate were synthesized based on dodecyl benzene and toluene. The structures of the compounds were confirmed by infrared and nuclear magnetic resonance spectroscopy, and elemental analyses. The effect of spacer and side chain length on the interfacial tension of Gemini surfactant solution was investigated by comparison of the critical micelle concentration (cmc) of the surfactants in aqueous solution using the drop volume method, and the surface tension at the cmc (γcmc). The Gemini surfactant with the best properties was used as emulsifier in emulsion polymerization of methyl methacrylate, and its foam stability was also determined.  相似文献   

17.
The sugar-based gemini surfactant with peptide bonds, N,N'-bisalkyl-N,N'-bis[2-(lactobionylamide)ethyl]hexanediamide (2C(n)peLac, in which n represents hydrocarbon chain lengths of 12 and 16), was synthesized by reacting adipoyl chloride with the corresponding monomeric surfactant N-alkyl-N'-lactobionylethylenediamine (C(n)peLac), which was obtained by reacting ethylenediamine with alkyl bromide and lactobionic acid. The adsorption and micellization properties of C(n)peLac and 2C(n)peLac were characterized by the measurement of their equilibrium and dynamic surface tension, steady-state fluorescence using pyrene as a probe, dynamic light scattering (DLS), and time-resolved fluorescence quenching (TRFQ), and their biodegradability was also investigated. The critical micelle concentration (cmc) decreases with an increase in the hydrocarbon chains from monomeric to gemini surfactants, whereas it increases with an increase in the chain length from 12 to 16 for both systems. The increases in both the hydrocarbon chain and the chain length of sugar-based surfactants reduce surface activities such as the ability to lower the surface tension, the occupied area per molecule, and the adsorption rate at the air/water interface. The sugar-based surfactants C(n)peLac and 2C(n)peLac exhibit unique aggregation behavior in aqueous solution. The DLS results indicate that the apparent hydrodynamic diameter of C(n)peLac micelles decreases sharply with increasing concentration, whereas that of 2C(n)peLac micelles decreases gradually. From the TRFQ measurement, it was observed that, as concentration increases, the aggregation numbers are almost constant for C(n)peLac, whereas they increase for 2C(n)peLac. These results imply that loosely packed micelles formed by sugar-based surfactants become tightly packed micelles as the concentration increases. Furthermore, it was found that 2C(n)peLac shows lower biodegradability than does C(n)peLac because it contains tertiary amines in the molecule.  相似文献   

18.
The interaction has been studied in aqueous solutions between a negatively charged conjugated polyelectrolyte poly{1,4-phenylene-[9,9-bis(4-phenoxybutylsulfonate)]fluorene-2,7-diyl} copolymer (PBS-PFP) and several cationic tetraalkylammonium surfactants with different structures (alkyl chain length, counterion, or double alkyl chain), with tetramethylammonium cations and with the anionic surfactant sodium dodecyl sulfate (SDS) by electronic absorption and emission spectroscopy and by conductivity measurements. The results are compared with those previously obtained on the interaction of the same polymer with the nonionic surfactant C12E5. The nature of the electrostatic or hydrophobic polymer-surfactant interactions leads to very different behavior. The polymer induces the aggregation with the cationic surfactants at concentrations well below the critical micelle concentration, while this is inhibited with the anionic SDS, as demonstrated from conductivity measurements. The interaction with cationic surfactants only shows a small dependence on alkyl chain length or counterion and is suggested to be dominated by electrostatic interactions. In contrast to previous studies with the nonionic C12E5, both the cationic and the anionic surfactants quench the PBS-PFP emission intensity, leading also to a decrease in the polymer emission lifetime. However, the interaction with these cationic surfactants leads to the appearance of a new emission band (approximately 525 nm), which may be due to energy hopping to defect sites due to the increase of PBS-PFP interchain interaction favored by charge neutralization of the anionic polymer by cationic surfactant and by hydrophobic interactions involving the surfactant alkyl chains, since the same green band is not observed by adding either tetramethylammonium hydroxide or chloride. This effect suggests that the cationic surfactants are changing the nature of PBS-PFP aggregates. The nature of the polymer and surfactant interactions can, thus, be used to control the spectroscopic and conductivity properties of the polymer, which may have implications in its applications.  相似文献   

19.
We have examined the polymer/surfactant interaction in mixed aqueous solutions of cationic surfactants and anionic polyelectrolytes combining various techniques: tensiometry, potentiometry with surfactant-selective electrodes, and viscosimetry. We have investigated the role of varying polymer charge density, polymer concentration, surfactant chain length, polymer backbone rigidity, and molecular weight on the critical aggregation concentration (Cac) of mixed polymer/surfactant systems. The Cac of these systems, estimated from tensiometry and potentiometry, is found to be in close agreement. Different Cac variations with polymer charge density and surfactant chain length were observed with polymers having persistence lengths either smaller or larger than surfactant micelle size, which might reflect a different type of molecular organization in the polymer/surfactant complexes. The surfactant concentration at which the viscosity starts to decrease sharply is different from the Cac and probably reflects the polymer chain shrinkage due to surfactant binding.  相似文献   

20.
The solubilization of water in w/o microemulsions formed with mixed-surfactants containing one anionic and one cationic surfactant and alcohol was studied as a function of alkyl chain length of oil (C6 to C16), mixed-surfactant (sodium dodecyl sulfate, SDS, and cetyltrimethylammonium bromide, CTAB, or cetylpyridinium bromide CPB), and alcohol (1-butanol, 1-pentanol, 1-hexanol). The results show that the solubilization of water in microemulsion systems increases significantly with the mixed-surfactants due to the synergistic effect resulting from the strong Coulombic interactions between cationic and anionic surfactants and the solubilizing efficiency increases as the chain length or concentration of alcohol increases. With increasing the oil chain length the solubilization for water increases, decreases, and has the chain length compatibility effect when the systems contain 1-hexanol, 1-butanol, 1-pentanol, respectively. The total solubilizing capacity increases as the surfactant concentration (keep the ratio of SDS to butanol constant) increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号