首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an extension of Karmarkar's linear programming algorithm for solving a more general group of optimization problems: convex quadratic programs. This extension is based on the iterated application of the objective augmentation and the projective transformation, followed by optimization over an inscribing ellipsoid centered at the current solution. It creates a sequence of interior feasible points that converge to the optimal feasible solution in O(Ln) iterations; each iteration can be computed in O(Ln 3) arithmetic operations, wheren is the number of variables andL is the number of bits in the input. In this paper, we emphasize its convergence property, practical efficiency, and relation to the ellipsoid method.  相似文献   

2.
In this paper, we describe a natural implementation of the classical logarithmic barrier function method for smooth convex programming. It is assumed that the objective and constraint functions fulfill the so-called relative Lipschitz condition, with Lipschitz constantM>0.In our method, we do line searches along the Newton direction with respect to the strictly convex logarithmic barrier function if we are far away from the central trajectory. If we are sufficiently close to this path, with respect to a certain metric, we reduce the barrier parameter. We prove that the number of iterations required by the algorithm to converge to an -optimal solution isO((1+M 2) log) orO((1+M 2)nlog), depending on the updating scheme for the lower bound.on leave from Eötvös University, Budapest, Hungary.  相似文献   

3.
In this paper, we present an interior point algorithm for solving both convex and nonconvex quadratic programs. The method, which is an extension of our interior point work on linear programming problems efficiently solves a wide class of largescale problems and forms the basis for a sequential quadratic programming (SQP) solver for general large scale nonlinear programs. The key to the algorithm is a three-dimensional cost improvement subproblem, which is solved at every interation. We have developed an approximate recentering procedure and a novel, adaptive big-M Phase I procedure that are essential to the sucess of the algorithm. We describe the basic method along with the recentering and big-M Phase I procedures. Details of the implementation and computational results are also presented.Contribution of the National Institute of Standards and Tedchnology and not subject to copyright in the United States. This research was supported in part by ONR Contract N-0014-87-F0053.  相似文献   

4.
An interior point algorithm for semi-infinite linear programming   总被引:3,自引:0,他引:3  
We consider the generalization of a variant of Karmarkar's algorithm to semi-infinite programming. The extension of interior point methods to infinite-dimensional linear programming is discussed and an algorithm is derived. An implementation of the algorithm for a class of semi-infinite linear programs is described and the results of a number of test problems are given. We pay particular attention to the problem of Chebyshev approximation. Some further results are given for an implementation of the algorithm applied to a discretization of the semi-infinite linear program, and a convergence proof is given in this case.  相似文献   

5.
We consider partial updating in Ye's affine potential reduction algorithm for linear programming. We show that using a Goldstein—Armijo rule to safeguard a linesearch of the potential function during primal steps is sufficient to control the number of updates. We also generalize the dual step construction to apply with partial updating. The result is the first O(n 3 L) algorithm for linear programming whose steps are not constrained by the need to remain approximately centered. The fact that the algorithm has a rigorous primal-only initialization actually reduces the complexity to less than O(m 1.5 n 1.5 L).  相似文献   

6.
We present a new projective interior point method for linear programming with unknown optimal value. This algorithm requires only that an interior feasible point be provided. It generates a strictly decreasing sequence of objective values and within polynomial time, either determines an optimal solution, or proves that the problem is unbounded. We also analyze the asymptotic convergence rate of our method and discuss its relationship to other polynomial time projective interior point methods and the affine scaling method.This research was supported in part by NSF Grants DMS-85-12277 and CDR-84-21402 and ONR Contract N00014-87-K0214.  相似文献   

7.
The linear semidefinite programming problem is examined. A primal interior point method is proposed to solve this problem. It extends the barrier-projection method used for linear programs. The basic properties of the proposed method are discussed, and its local convergence is proved.  相似文献   

8.
We propose an interior point method for large-scale convex quadratic programming where no assumptions are made about the sparsity structure of the quadratic coefficient matrixQ. The interior point method we describe is a doubly iterative algorithm that invokes aconjugate projected gradient procedure to obtain the search direction. The effect is thatQ appears in a conjugate direction routine rather than in a matrix factorization. By doing this, the matrices to be factored have the same nonzero structure as those in linear programming. Further, one variant of this method istheoretically convergent with onlyone matrix factorization throughout the procedure.  相似文献   

9.
Xun Qian  Jie Sun 《Optimization》2017,66(4):589-608
In this paper, we analyse three interior point continuous trajectories for convex programming with general linear constraints. The three continuous trajectories are derived from the primal–dual path-following method, the primal–dual affine scaling method and the central path, respectively. Theoretical properties of the three interior point continuous trajectories are fully studied. The optimality and convergence of all three interior point continuous trajectories are obtained for any interior feasible point under some mild conditions. In particular, with proper choice of some parameters, the convergence for all three interior point continuous trajectories does not require the strict complementarity or the analyticity of the objective function. These results are new in the literature.  相似文献   

10.
An algorithm is presented which solves bounded quadratic optimization problems with n variables and one linear constraint in at most O(n) steps. The algorithm is based on a parametric approach combined with well-known ideas for constructing efficient algorithms. It improves an O(n log n) algorithm which has been developed for a more restricted case of the problem.  相似文献   

11.
An implementation of Karmarkar's algorithm for linear programming   总被引:14,自引:0,他引:14  
This paper describes the implementation of power series dual affine scaling variants of Karmarkar's algorithm for linear programming. Based on a continuous version of Karmarkar's algorithm, two variants resulting from first and second order approximations of the continuous trajectory are implemented and tested. Linear programs are expressed in an inequality form, which allows for the inexact computation of the algorithm's direction of improvement, resulting in a significant computational advantage. Implementation issues particular to this family of algorithms, such as treatment of dense columns, are discussed. The code is tested on several standard linear programming problems and compares favorably with the simplex codeMinos 4.0.  相似文献   

12.
Convex quadratically constrained quadratic problems are considered. It is shown that such problems can be transformed to aconic form. The feasible set of the conic form is the intersection of a direct product of standard quadratic cones intersected with a hyperplane (the analogue of a simplex), and a linear subspace. For a problem of such form, the analogue of Karmarkar's projective transformation and logarithmic barrier function are built. This allows us to extend “word by word” the method of Karmarkar for LP to QCQP and allows us to obtain a similar polynomial worst-case bound for the number of iterations.  相似文献   

13.
We will present a potential reduction method for linear programming where only the constraints with relatively small dual slacks—termed active constraints—will be taken into account to form the ellipsoid constraint at each iteration of the process. The algorithm converges to the optimal feasible solution in O( L) iterations with the same polynomial bound as in the full constraints case, wheren is the number of variables andL is the data length. If a small portion of the constraints is active near the optimal solution, the computational cost to find the next direction of movement in one iteration may be considerably reduced by the proposed strategy.This research was partially done in June 1990 while the author was visiting the Department of Mathematics, University of Pisa.  相似文献   

14.
Let where and i is an n×n positive semidefinite matrix. We prove that the volumetric and combined volumetric-logarithmic barriers for are and self-concordant, respectively. Our analysis uses the semidefinite programming (SDP) representation for the convex quadratic constraints defining , and our earlier results on the volumetric barrier for SDP. The self-concordance results actually hold for a class of SDP problems more general than those corresponding to the SDP representation of .Mathematics Subject Classification (1991):90C25, 90C30  相似文献   

15.
We describe a primal-dual interior point algorithm for convex quadratic programming problems which requires a total of number of iterations, whereL is the input size. Each iteration updates a penalty parameter and finds an approximate Newton direction associated with the Karush-Kuhn-Tucker system of equations which characterizes a solution of the logarithmic barrier function problem. The algorithm is based on the path following idea. The total number of arithmetic operations is shown to be of the order of O(n 3 L).  相似文献   

16.
We prove that a general convex quadratic program (QP) can be reduced to the problem of finding the nearest point on a simplicial cone inO(n 3 +n logL) steps, wheren andL are, respectively, the dimension and the encoding length of QP. The proof is quite simple and uses duality and repeated perturbation. The implication, however, is nontrivial since the problem of finding the nearest point on a simplicial cone has been considered a simpler problem to solve in the practical sense due to its special structure. Also we show that, theoretically, this reduction implies that (i) if an algorithm solves QP in a polynomial number of elementary arithmetic operations that is independent of the encoding length of data in the objective function then it can be used to solve QP in strongly polynomial time, and (ii) ifL is bounded by a first order exponential function ofn then (i) can be stated even in stronger terms: to solve QP in strongly polynomial time, it suffices to find an algorithm running in polynomial time that is independent of the encoding length of the quadratic term matrix or constraint matrix. Finally, based on these results, we propose a conjecture.corresponding author. The research was done when the author was at the Department of IE & OR, University of California at Berkeley, and partially supported by ONR grant N00014-91-j-1241.  相似文献   

17.
This paper is concerned with the convergence property of Dikin's algorithm applied to linearly constrained smooth convex programs. We study a version of Dikin's algorithm in which a second-order approximation of the objective function is minimized at each iteration together with an affine transformation of the variables. We prove that the sequence generated by the algorithm globally converges to a limit point at a local linear rate if the objective function satisfies a Hessian similarity condition. The result is of a theoretical nature in the sense that in order to ensure that the limit point is an -optimal solution, one may have to restrict the steplength to the order ofO(). The analysis does not depend on non-degeneracy assumptions.  相似文献   

18.
We propose a potential-reduction algorithm which always uses the primal—dual affine-scaling direction as a search direction. We choose a step size at each iteration of the algorithm such that the potential function does not increase, so that we can take a longer step size than the minimizing point of the potential function. We show that the algorithm is polynomial-time bounded. We also propose a low-complexity algorithm, in which the centering direction is used whenever an iterate is far from the path of centers.This paper is dedicated to Phil Wolfe on the occasion of his 65th birthday.  相似文献   

19.
In this paper we propose an O(n 3 L) algorithm which is a modification of the path following algorithm [8] for a linear complementarity problem. The path following algorithm has to take a short step size in each iteration in order to bound the number of overall arithmetic operations by O(n 3 L). In practical computation, we can determine the step size adaptively. Mizuno, Yoshise, and Kikuchi [11] reported that such an adaptive algorithm required about O(L) iterations for some test problems. Here we show that we can use a rank one update technique in the adaptive algorithm so that the number of overall arithmetic operations is theoretically bounded by O(n 3 L).Research supported in part by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University.Research supported in part by NSF grants ECS-8602534 and DMS-8904406 and ONR contract N-00014-87-K0212.  相似文献   

20.
In this paper we present a primal-dual inexact infeasible interior-point algorithm for semidefinite programming problems (SDP). This algorithm allows the use of search directions that are calculated from the defining linear system with only moderate accuracy, and does not require feasibility to be maintained even if the initial iterate happened to be a feasible solution of the problem. Under a mild assumption on the inexactness, we show that the algorithm can find an -approximate solution of an SDP in O(n2ln(1/)) iterations. This bound of our algorithm is the same as that of the exact infeasible interior point algorithms proposed by Y. Zhang.Research supported in part by the Singapore-MIT alliance, and NUS Academic Research Grant R-146-000-032-112.Mathematics Subject Classification (1991): 90C05, 90C30, 65K05  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号